Abstract

A steganographic method offering a high hiding capacity is presented in which the techniques of digital holography are used to distribute information from a small secret image across the larger pixel field of a cover image. An iterative algorithm is used to design a phase-only or complex hologram from a padded version of the secret image, quantizing this data according to the carrier data bits that are available within the intended cover image. By introducing the hologram data only into low-order bits of larger amplitude cover pixels, the change in the cover image remains imperceptible to the casual observer, with a peak signal-to-noise ratio of >40dB.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sherif and J. Bahram, Appl. Opt. 41, 6062 (2002).
    [CrossRef] [PubMed]
  2. X. Zhou, L. Chen, and J. Shao, Opt. Eng. 44, 067007 (2005).
    [CrossRef]
  3. M. Olszewski and K. Chalasinska-Macukow, in Proceedings of the Symposium on Photonics Technologies for the 7th Framework Program (2006), pp. 119–128.
  4. P. Refreiger and B. Javidi, Opt. Lett. 20, 767 (1995).
    [CrossRef]
  5. S. Kishk and B. Javidi, Appl. Opt. 41, 5462 (2002).
    [CrossRef] [PubMed]
  6. H. Hamam, Appl. Opt. 49, 2519 (2010).
    [CrossRef]
  7. H. Hamam, www8.umoncton.ca/umcm-hamam_habib/Optics/Fresnel/Steganography/Steganography.htm.

2010 (1)

2005 (1)

X. Zhou, L. Chen, and J. Shao, Opt. Eng. 44, 067007 (2005).
[CrossRef]

2002 (2)

1995 (1)

Bahram, J.

Chalasinska-Macukow, K.

M. Olszewski and K. Chalasinska-Macukow, in Proceedings of the Symposium on Photonics Technologies for the 7th Framework Program (2006), pp. 119–128.

Chen, L.

X. Zhou, L. Chen, and J. Shao, Opt. Eng. 44, 067007 (2005).
[CrossRef]

Hamam, H.

H. Hamam, Appl. Opt. 49, 2519 (2010).
[CrossRef]

H. Hamam, www8.umoncton.ca/umcm-hamam_habib/Optics/Fresnel/Steganography/Steganography.htm.

Javidi, B.

Kishk, S.

Olszewski, M.

M. Olszewski and K. Chalasinska-Macukow, in Proceedings of the Symposium on Photonics Technologies for the 7th Framework Program (2006), pp. 119–128.

Refreiger, P.

Shao, J.

X. Zhou, L. Chen, and J. Shao, Opt. Eng. 44, 067007 (2005).
[CrossRef]

Sherif, K.

Zhou, X.

X. Zhou, L. Chen, and J. Shao, Opt. Eng. 44, 067007 (2005).
[CrossRef]

Appl. Opt. (3)

Opt. Eng. (1)

X. Zhou, L. Chen, and J. Shao, Opt. Eng. 44, 067007 (2005).
[CrossRef]

Opt. Lett. (1)

Other (2)

M. Olszewski and K. Chalasinska-Macukow, in Proceedings of the Symposium on Photonics Technologies for the 7th Framework Program (2006), pp. 119–128.

H. Hamam, www8.umoncton.ca/umcm-hamam_habib/Optics/Fresnel/Steganography/Steganography.htm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Pixels of the cover image: more bits are used to hide data when the pixel value (bits 0 to 7) is high. Data bits are not necessarily inserted starting from bit 0 ( SDP > 0 ). Thresholds have zeros in the lower order bits to be replaced by data bits.

Fig. 2
Fig. 2

Ping-pong algorithm to design the hologram S ( u , v ) , which should reconstruct the secret data d ( x , y ) . c ( x , y ) , cover image before inserting data; and c ( x , y ) , after insertion.

Fig. 3
Fig. 3

PSNR versus SNR, number of cover pixels N C and number of cover bits N B . Cover image contains N = 262144 pixels, and data contain N D = 26693 pixels (10.18% of N). PSNR m , PSNR obtained for a multilevel phase hologram; and PSNR b , for a binary hologram, SDP = 0 .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

PSNR = 10 × log 10 ( N ( Z ) MAX 2 ( i , j ) z ( R i , j O i , j ) 2 ) ,

Metrics