Abstract

In trying to manipulate the intensity distribution of a focused field, one typically uses amplitude or phase masks. Here we explore an approach, namely, varying the state of spatial coherence of the incident field. We experimentally demonstrate that the focusing of a Bessel-correlated beam produces an intensity minimum at the geometric focus rather than a maximum. By varying the spatial coherence width of the field, which can be achieved by merely changing the size of an iris, it is possible to change this minimum into a maximum in a continuous manner. This method can be used, for example, in novel optical trapping schemes, to selectively manipulate particles with either a low or high index of refraction.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Stamnes, Waves in Focal Regions (Hilger, 1986).
  2. W. Wang, A. T. Friberg, and E. Wolf, J. Opt. Soc. Am. A 14, 491 (1997).
    [CrossRef]
  3. B. Lu, B. Zhang, and B. Cai, J. Mod. Opt. 42, 289 (1995).
    [CrossRef]
  4. A. T. Friberg, T. D. Visser, W. Wang, and E. Wolf, Opt. Commun. 196, 1 (2001).
    [CrossRef]
  5. L. Wang and B. Lu, Optik (Jena) 117, 167 (2006).
  6. D. G. Fischer and T. D. Visser, J. Opt. Soc. Am. A 21, 2097 (2004).
    [CrossRef]
  7. L. Rao and J. Pu, J. Opt. Soc. Am. A 24, 2242 (2007).
    [CrossRef]
  8. J. Pu, M. Dong, and T. Wang, Appl. Opt. 45, 7553 (2006).
    [CrossRef] [PubMed]
  9. T. D. Visser, G. Gbur, and E. Wolf, Opt. Commun. 213, 13 (2002).
    [CrossRef]
  10. G. Gbur and T. D. Visser, Opt. Lett. 28, 1627 (2003).
    [CrossRef] [PubMed]
  11. T. van Dijk, G. Gbur, and T. D. Visser, J. Opt. Soc. Am. A 25, 575 (2008).
    [CrossRef]
  12. K. T. Gahagan and J. G. A. Swartzlander, J. Opt. Soc. Am. B 16, 533 (1999).
    [CrossRef]
  13. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, 1999).
  14. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, 2007).
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  16. E. Wolf and Y. Li, Opt. Commun. 39, 205 (1981).
    [CrossRef]

2008

2007

2006

J. Pu, M. Dong, and T. Wang, Appl. Opt. 45, 7553 (2006).
[CrossRef] [PubMed]

L. Wang and B. Lu, Optik (Jena) 117, 167 (2006).

2004

2003

2002

T. D. Visser, G. Gbur, and E. Wolf, Opt. Commun. 213, 13 (2002).
[CrossRef]

2001

A. T. Friberg, T. D. Visser, W. Wang, and E. Wolf, Opt. Commun. 196, 1 (2001).
[CrossRef]

1999

1997

1995

B. Lu, B. Zhang, and B. Cai, J. Mod. Opt. 42, 289 (1995).
[CrossRef]

1981

E. Wolf and Y. Li, Opt. Commun. 39, 205 (1981).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, 1999).

Cai, B.

B. Lu, B. Zhang, and B. Cai, J. Mod. Opt. 42, 289 (1995).
[CrossRef]

Dong, M.

Fischer, D. G.

Friberg, A. T.

A. T. Friberg, T. D. Visser, W. Wang, and E. Wolf, Opt. Commun. 196, 1 (2001).
[CrossRef]

W. Wang, A. T. Friberg, and E. Wolf, J. Opt. Soc. Am. A 14, 491 (1997).
[CrossRef]

Gahagan, K. T.

Gbur, G.

Li, Y.

E. Wolf and Y. Li, Opt. Commun. 39, 205 (1981).
[CrossRef]

Lu, B.

L. Wang and B. Lu, Optik (Jena) 117, 167 (2006).

B. Lu, B. Zhang, and B. Cai, J. Mod. Opt. 42, 289 (1995).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

Pu, J.

Rao, L.

Stamnes, J. J.

J. J. Stamnes, Waves in Focal Regions (Hilger, 1986).

Swartzlander, J. G. A.

van Dijk, T.

Visser, T. D.

Wang, L.

L. Wang and B. Lu, Optik (Jena) 117, 167 (2006).

Wang, T.

Wang, W.

A. T. Friberg, T. D. Visser, W. Wang, and E. Wolf, Opt. Commun. 196, 1 (2001).
[CrossRef]

W. Wang, A. T. Friberg, and E. Wolf, J. Opt. Soc. Am. A 14, 491 (1997).
[CrossRef]

Wolf, E.

T. D. Visser, G. Gbur, and E. Wolf, Opt. Commun. 213, 13 (2002).
[CrossRef]

A. T. Friberg, T. D. Visser, W. Wang, and E. Wolf, Opt. Commun. 196, 1 (2001).
[CrossRef]

W. Wang, A. T. Friberg, and E. Wolf, J. Opt. Soc. Am. A 14, 491 (1997).
[CrossRef]

E. Wolf and Y. Li, Opt. Commun. 39, 205 (1981).
[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, 1999).

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, 2007).

Zhang, B.

B. Lu, B. Zhang, and B. Cai, J. Mod. Opt. 42, 289 (1995).
[CrossRef]

Appl. Opt.

J. Mod. Opt.

B. Lu, B. Zhang, and B. Cai, J. Mod. Opt. 42, 289 (1995).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

E. Wolf and Y. Li, Opt. Commun. 39, 205 (1981).
[CrossRef]

T. D. Visser, G. Gbur, and E. Wolf, Opt. Commun. 213, 13 (2002).
[CrossRef]

A. T. Friberg, T. D. Visser, W. Wang, and E. Wolf, Opt. Commun. 196, 1 (2001).
[CrossRef]

Opt. Lett.

Optik (Jena)

L. Wang and B. Lu, Optik (Jena) 117, 167 (2006).

Other

J. J. Stamnes, Waves in Focal Regions (Hilger, 1986).

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University Press, 1999).

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, 2007).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of the focusing configuration.

Fig. 2
Fig. 2

Schematic of the setup.

Fig. 3
Fig. 3

Modulus of the degree of spatial coherence of the field as a function of the slit separation d. The solid red curve indicates the theoretical prediction, and the blue circles indicate experimental values with error bars.

Fig. 4
Fig. 4

Illustration of negative correlation of the field at the two slits. At the center of the fringe pattern (vertical dashed line), an intensity minimum is observed. The blue and the red curves represent measurements with one slit covered.

Fig. 5
Fig. 5

Intensity along the z axis. The solid curve represents the theoretical prediction, and the circles correspond to experimental measurements.

Fig. 6
Fig. 6

Transforming the intensity maximum in the focal plane into a minimum by varying the iris radius, (a) 0.25, (b) 0.75, and (c) 1.2 mm .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U ( r , ω ) = i λ A U ( 0 ) ( r , ω ) e i k s s d 2 r ,
W ( 0 ) ( r 1 , r 2 , ω ) = U * ( r 1 , ω ) U ( r 2 , ω ) ,
W ( r 1 , r 2 , ω ) = 1 λ 2 A W ( 0 ) ( r 1 , r 2 , ω ) e i k ( s 2 s 1 ) s 1 s 2 d 2 r 1 d 2 r 2 ,
μ ( 0 ) ( r 1 , r 2 , ω ) = W ( 0 ) ( r 1 , r 2 , ω ) S ( 0 ) ( r 1 , ω ) S ( 0 ) ( r 2 , ω ) .
W ( 0 ) ( r 1 , r 2 , ω ) = S ( 0 ) ( ω ) J 0 ( β | r 2 r 1 | ) .

Metrics