Abstract

A method for optimal design of a multilayer diffractive optical element (MLDOE) for dual-wide-waveband optical systems is presented with consideration of polychromatic integral diffraction efficiency (PIDE) and the weight factors of PIDE for each waveband. The design process and simulation of a MLDOE in mid-wave and long-wave IR are described, and the comparison of diffraction efficiency of the MLDOEs for different design wavelength pairs determined by different methods is given. This method can make the design process more rational and more reasonable and can give a better design result than that with the conventional design method.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Vizgaitis, Proc. SPIE 6940, 69400S (2008).
    [CrossRef]
  2. J. N. Vizgaitis, in International Optical Design Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper IWD6.
  3. G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” MIT Lincoln Laboratory Technical Report 914(1991).
  4. D. W. Sweeney and G. E. Sommargren, Appl. Opt. 34, 2469 (1995).
    [CrossRef] [PubMed]
  5. D. A. Buralli and G. M. Morris, Appl. Opt. 31, 4389 (1992).
    [CrossRef] [PubMed]
  6. T. Nakai and H. Ogawa, in Diffractive Optics and Micro-Optics, R. Magnusson, ed., Vol. 75 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper DMA2.
  7. S. Noach, Y. Arieli, and N. Eisenberg, Opt. Lett. 24, 333 (1999).
    [CrossRef]
  8. Y. Arieli, S. Noach, S. Ozeri, and N. Eisenberg, Appl. Opt. 37, 6174 (1998).
    [CrossRef]
  9. C. Fan, Z. Wang, L. Lin, M. Zhang, and H. Fan, Chin. Phys. Lett. 24, 1973 (2007).
    [CrossRef]
  10. M. Bass, Handbook of Optics (McGraw-Hill, 1995), Vol. 4.

2008 (1)

J. Vizgaitis, Proc. SPIE 6940, 69400S (2008).
[CrossRef]

2007 (1)

C. Fan, Z. Wang, L. Lin, M. Zhang, and H. Fan, Chin. Phys. Lett. 24, 1973 (2007).
[CrossRef]

1999 (1)

1998 (1)

1995 (1)

1992 (1)

Arieli, Y.

Bass, M.

M. Bass, Handbook of Optics (McGraw-Hill, 1995), Vol. 4.

Buralli, D. A.

Eisenberg, N.

Fan, C.

C. Fan, Z. Wang, L. Lin, M. Zhang, and H. Fan, Chin. Phys. Lett. 24, 1973 (2007).
[CrossRef]

Fan, H.

C. Fan, Z. Wang, L. Lin, M. Zhang, and H. Fan, Chin. Phys. Lett. 24, 1973 (2007).
[CrossRef]

Lin, L.

C. Fan, Z. Wang, L. Lin, M. Zhang, and H. Fan, Chin. Phys. Lett. 24, 1973 (2007).
[CrossRef]

Morris, G. M.

Nakai, T.

T. Nakai and H. Ogawa, in Diffractive Optics and Micro-Optics, R. Magnusson, ed., Vol. 75 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper DMA2.

Noach, S.

Ogawa, H.

T. Nakai and H. Ogawa, in Diffractive Optics and Micro-Optics, R. Magnusson, ed., Vol. 75 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper DMA2.

Ozeri, S.

Sommargren, G. E.

Swanson, G. J.

G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” MIT Lincoln Laboratory Technical Report 914(1991).

Sweeney, D. W.

Vizgaitis, J.

J. Vizgaitis, Proc. SPIE 6940, 69400S (2008).
[CrossRef]

Vizgaitis, J. N.

J. N. Vizgaitis, in International Optical Design Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper IWD6.

Wang, Z.

C. Fan, Z. Wang, L. Lin, M. Zhang, and H. Fan, Chin. Phys. Lett. 24, 1973 (2007).
[CrossRef]

Zhang, M.

C. Fan, Z. Wang, L. Lin, M. Zhang, and H. Fan, Chin. Phys. Lett. 24, 1973 (2007).
[CrossRef]

Appl. Opt. (3)

Chin. Phys. Lett. (1)

C. Fan, Z. Wang, L. Lin, M. Zhang, and H. Fan, Chin. Phys. Lett. 24, 1973 (2007).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

J. Vizgaitis, Proc. SPIE 6940, 69400S (2008).
[CrossRef]

Other (4)

J. N. Vizgaitis, in International Optical Design Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper IWD6.

G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” MIT Lincoln Laboratory Technical Report 914(1991).

T. Nakai and H. Ogawa, in Diffractive Optics and Micro-Optics, R. Magnusson, ed., Vol. 75 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2002), paper DMA2.

M. Bass, Handbook of Optics (McGraw-Hill, 1995), Vol. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Structure of MLDOEs. H 1 and H 2 are respectively the surface relief heights of the first and second HDEs. D is the width of the air gap. The solid and dashed lines are the diffractive directions for MWIR and LWIR, respectively.

Fig. 2
Fig. 2

Comprehensive PIDEs of a multilayer diffractive optical element with Ge and ZnS for different design wavelength pairs.

Fig. 3
Fig. 3

(a) Comprehensive PIDEs versus the second design wavelength with the first design wavelength fixed. (b) Maximum comprehensive PIDE versus the first design wavelength when the second design wavelength changed from 3–5 and 8 12 μm .

Fig. 4
Fig. 4

Diffraction efficiency of MLDOEs with different design wavelength pairs.

Tables (1)

Tables Icon

Table 1 PIDEs of MLDOEs and Absolute Surface Relief Heights of the Two HDEs

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( λ ) = 2 π λ ( ( n 1 ( λ ) 1 ) H 1 + ( n 2 ( λ ) 1 ) H 2 ) = m 2 π ,
{ 2 π λ 1 ( ( n 1 ( λ 1 ) 1 ) H 1 + ( n 2 ( λ 1 ) 1 ) H 2 ) = m 2 π 2 π λ 2 ( ( n 1 ( λ 2 ) 1 ) H 1 + ( n 2 ( λ 2 ) 1 ) H 2 ) = m 2 π .
H 1 = m λ 1 ( n 2 ( λ 2 ) 1 ) m λ 2 ( n 2 ( λ 1 ) 1 ) ( n 1 ( λ 1 ) 1 ) ( n 2 ( λ 2 ) 1 ) ( n 1 ( λ 2 ) 1 ) ( n 2 ( λ 1 ) 1 ) , H 2 = m λ 2 ( n 1 ( λ 1 ) 1 ) m λ 1 ( n 1 ( λ 2 ) 1 ) ( n 1 ( λ 1 ) 1 ) ( n 2 ( λ 2 ) 1 ) ( n 1 ( λ 2 ) 1 ) ( n 2 ( λ 1 ) 1 ) .
η m ( λ ) = sinc 2 ( m ϕ ( λ ) 2 π ) ,
η ¯ m int ( λ 1 , λ 2 ) = 1 λ max λ min λ min λ max sinc 2 ( m ϕ ( λ ) 2 π ) d λ .
η ¯ m int ( λ 1 , λ 2 ) = w 1 λ 1 max λ 1 min λ 1 min λ 1 max sinc 2 ( m ϕ ( λ ) 2 π ) d λ + w 2 λ 2 max λ 2 min λ 2 min λ 2 max sinc 2 ( m ϕ ( λ ) 2 π ) d λ ,

Metrics