Abstract

Interactions between supercontinuum (SC) light pulses, produced by the propagation of rapidly sequenced picosecond pump laser pulses along a photonic crystal fiber, result in spectral broadening, which we attribute to interpulse soliton collisions. This phenomenon was measured experimentally, following our observation of spectral broadening in numerical simulations that exhibit so-called “pulse wraparound” or “temporal aliasing.” This occurs in simulations with narrow time grids: as early parts of the SC pulse leave the computational time domain, they “reenter” at the beginning and so interact with later parts of the evolving SC pulse. We show that this provides an effective model to predict the experimentally observed spectral changes.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge U. Press, 2010).
    [CrossRef]
  2. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  3. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2008).
  4. J. Hult, J. Lightwave Technol. 25, 3770 (2007).
    [CrossRef]
  5. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, 1999).
  6. G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, Phys. Lett. A 374, 989 (2010).
    [CrossRef]
  7. http://www.nktphotonics.com/files/files/SC-5.0-1040-081020.pdf.
  8. F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, Opt. Express 14, 9844 (2006).
    [CrossRef] [PubMed]
  9. M. Erkintalo, G. Genty, and J. M. Dudley, Opt. Express 18, 13379 (2010).
    [CrossRef] [PubMed]
  10. J. Hult, R. S. Watt, and C. F. Kaminski, Opt. Express 15, 11385 (2007).
    [CrossRef] [PubMed]
  11. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, J. Microsc. 227, 203 (2007).
    [CrossRef] [PubMed]
  12. S. S. Kiwanuka, T. Laurila, and C. F. Kaminski, Anal. Chem. 82, 7498 (2010).
    [CrossRef] [PubMed]
  13. R. Watt, T. Laurila, C. F. Kaminski, and J. F. Hult, Appl. Spectrosc. 63, 1389 (2009).
    [CrossRef] [PubMed]
  14. M. H. Frosz, O. Bang, and A. Bjarklev, Opt. Express 14, 9391 (2006).
    [CrossRef] [PubMed]

2010 (3)

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, Phys. Lett. A 374, 989 (2010).
[CrossRef]

S. S. Kiwanuka, T. Laurila, and C. F. Kaminski, Anal. Chem. 82, 7498 (2010).
[CrossRef] [PubMed]

M. Erkintalo, G. Genty, and J. M. Dudley, Opt. Express 18, 13379 (2010).
[CrossRef] [PubMed]

2009 (1)

2007 (3)

J. Hult, R. S. Watt, and C. F. Kaminski, Opt. Express 15, 11385 (2007).
[CrossRef] [PubMed]

J. Hult, J. Lightwave Technol. 25, 3770 (2007).
[CrossRef]

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, J. Microsc. 227, 203 (2007).
[CrossRef] [PubMed]

2006 (3)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2008).

Akhmediev, N.

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, Phys. Lett. A 374, 989 (2010).
[CrossRef]

Bang, O.

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, Phys. Lett. A 374, 989 (2010).
[CrossRef]

M. H. Frosz, O. Bang, and A. Bjarklev, Opt. Express 14, 9391 (2006).
[CrossRef] [PubMed]

Bjarklev, A.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

de Sterke, C. M.

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, Phys. Lett. A 374, 989 (2010).
[CrossRef]

Dias, F.

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, Phys. Lett. A 374, 989 (2010).
[CrossRef]

Dudley, J. M.

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, Phys. Lett. A 374, 989 (2010).
[CrossRef]

M. Erkintalo, G. Genty, and J. M. Dudley, Opt. Express 18, 13379 (2010).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge U. Press, 2010).
[CrossRef]

Elder, A. D.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, J. Microsc. 227, 203 (2007).
[CrossRef] [PubMed]

Erkintalo, M.

Frank, J. H.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, J. Microsc. 227, 203 (2007).
[CrossRef] [PubMed]

Frosz, M. H.

Genty, G.

M. Erkintalo, G. Genty, and J. M. Dudley, Opt. Express 18, 13379 (2010).
[CrossRef] [PubMed]

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, Phys. Lett. A 374, 989 (2010).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Hult, J.

Hult, J. F.

Jeyasekharan, A. D.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, J. Microsc. 227, 203 (2007).
[CrossRef] [PubMed]

Kaminski, C. F.

S. S. Kiwanuka, T. Laurila, and C. F. Kaminski, Anal. Chem. 82, 7498 (2010).
[CrossRef] [PubMed]

R. Watt, T. Laurila, C. F. Kaminski, and J. F. Hult, Appl. Spectrosc. 63, 1389 (2009).
[CrossRef] [PubMed]

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, J. Microsc. 227, 203 (2007).
[CrossRef] [PubMed]

J. Hult, R. S. Watt, and C. F. Kaminski, Opt. Express 15, 11385 (2007).
[CrossRef] [PubMed]

Kiwanuka, S. S.

S. S. Kiwanuka, T. Laurila, and C. F. Kaminski, Anal. Chem. 82, 7498 (2010).
[CrossRef] [PubMed]

Knight, J. C.

Laurila, T.

Luan, F.

Oppenheim, A. V.

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, 1999).

Schafer, R. W.

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, 1999).

Skryabin, D. V.

Swartling, J.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, J. Microsc. 227, 203 (2007).
[CrossRef] [PubMed]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge U. Press, 2010).
[CrossRef]

Venkitaraman, A. R.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, J. Microsc. 227, 203 (2007).
[CrossRef] [PubMed]

Watt, R.

Watt, R. S.

Yulin, A. V.

Anal. Chem. (1)

S. S. Kiwanuka, T. Laurila, and C. F. Kaminski, Anal. Chem. 82, 7498 (2010).
[CrossRef] [PubMed]

Appl. Spectrosc. (1)

J. Lightwave Technol. (1)

J. Microsc. (1)

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, J. Microsc. 227, 203 (2007).
[CrossRef] [PubMed]

Opt. Express (4)

Phys. Lett. A (1)

G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, Phys. Lett. A 374, 989 (2010).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Other (4)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2008).

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, 1999).

http://www.nktphotonics.com/files/files/SC-5.0-1040-081020.pdf.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge U. Press, 2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SC simulations using (a) a 320 ps time grid and (b) a 160 ps time grid, resulting in pulse wraparound and associated extrasoliton collisions after 17 m . Copies of the simulation grid (gray area) illustrate the physical interpretation of time-aliased simulations. (c) A full simulation of a pair of pulses. (d) Histogram of maximal soliton delays in 150 simulations using 320 ps grids, as depicted in (a).

Fig. 2
Fig. 2

Experimental setup for double pump-pulse SC generation: P, polarizer; M, mirror; ID, iris diaphragm; BS, 50% beam splitter; PBS, 8% pellicle beam splitter; DET, light detector; and OSA, optical spectrum analyzer.

Fig. 3
Fig. 3

(a) Experimental and (b) simulated double input pulse SC spectra. (c) The spectral broadening of pulse pairs at initial separations of 160 and 80 ps is compared with effectively independent pulses at 320 ps separation, for experimental measurements and time-aliased predictions. The experimental spectral features around 1350 to 1400 nm are due to ambient water vapor absorption.

Metrics