Abstract

We report a frequency-stabilized semiconductor-based mode-locked laser that uses a phase modulator and an intracavity Fabry-Perot etalon for both active mode-locking and optical frequency stabilization. A twofold multiplication of the repetition frequency of the laser is inherently obtained in the process. The residual timing jitter of the mode-locked pulse train is 13fs (1Hz to 100MHz), measured after regenerative frequency division of the photo detected pulse train.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Delfyett, S. Gee, M.-T. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, J. Lightwave Technol. 24, 2701 (2006).
    [CrossRef]
  2. Z. Jiang, D. E. Leaird, and A. M. Weiner, Opt. Express 13, 10431 (2005).
    [CrossRef] [PubMed]
  3. F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, J. Opt. A 11, 103001 (2009).
    [CrossRef]
  4. I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P. J. Delfyett, IEEE Photonics Technol. Lett. 22, 431 (2010).
    [CrossRef]
  5. E. D. Black, Am. J. Phys. 69, 79 (2001).
    [CrossRef]
  6. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  7. K. S. Abedin, N. Onodera, and M. Hyodo, Appl. Phys. Lett. 73, 1311 (1998).
    [CrossRef]
  8. K. S. Abedin, N. Onodera, and M. Hyodo, IEEE J. Quantum Electron. 35, 875 (1999).
    [CrossRef]
  9. E. Rubiola, M. Olivier, and J. Groslambert, IEEE Trans. Instrum. Meas. 41, 353 (1992).
    [CrossRef]

2010

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P. J. Delfyett, IEEE Photonics Technol. Lett. 22, 431 (2010).
[CrossRef]

2009

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, J. Opt. A 11, 103001 (2009).
[CrossRef]

2006

2005

2001

E. D. Black, Am. J. Phys. 69, 79 (2001).
[CrossRef]

1999

K. S. Abedin, N. Onodera, and M. Hyodo, IEEE J. Quantum Electron. 35, 875 (1999).
[CrossRef]

1998

K. S. Abedin, N. Onodera, and M. Hyodo, Appl. Phys. Lett. 73, 1311 (1998).
[CrossRef]

1992

E. Rubiola, M. Olivier, and J. Groslambert, IEEE Trans. Instrum. Meas. 41, 353 (1992).
[CrossRef]

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Abedin, K. S.

K. S. Abedin, N. Onodera, and M. Hyodo, IEEE J. Quantum Electron. 35, 875 (1999).
[CrossRef]

K. S. Abedin, N. Onodera, and M. Hyodo, Appl. Phys. Lett. 73, 1311 (1998).
[CrossRef]

Akbulut, M.

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P. J. Delfyett, IEEE Photonics Technol. Lett. 22, 431 (2010).
[CrossRef]

Black, E. D.

E. D. Black, Am. J. Phys. 69, 79 (2001).
[CrossRef]

Choi, M.-T.

Delfyett, P. J.

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P. J. Delfyett, IEEE Photonics Technol. Lett. 22, 431 (2010).
[CrossRef]

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, J. Opt. A 11, 103001 (2009).
[CrossRef]

P. J. Delfyett, S. Gee, M.-T. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, J. Lightwave Technol. 24, 2701 (2006).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Gee, S.

Groslambert, J.

E. Rubiola, M. Olivier, and J. Groslambert, IEEE Trans. Instrum. Meas. 41, 353 (1992).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hoghooghi, N.

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P. J. Delfyett, IEEE Photonics Technol. Lett. 22, 431 (2010).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hyodo, M.

K. S. Abedin, N. Onodera, and M. Hyodo, IEEE J. Quantum Electron. 35, 875 (1999).
[CrossRef]

K. S. Abedin, N. Onodera, and M. Hyodo, Appl. Phys. Lett. 73, 1311 (1998).
[CrossRef]

Izadpanah, H.

Jiang, Z.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Leaird, D. E.

Lee, W.

Mandridis, D.

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P. J. Delfyett, IEEE Photonics Technol. Lett. 22, 431 (2010).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Olivier, M.

E. Rubiola, M. Olivier, and J. Groslambert, IEEE Trans. Instrum. Meas. 41, 353 (1992).
[CrossRef]

Onodera, N.

K. S. Abedin, N. Onodera, and M. Hyodo, IEEE J. Quantum Electron. 35, 875 (1999).
[CrossRef]

K. S. Abedin, N. Onodera, and M. Hyodo, Appl. Phys. Lett. 73, 1311 (1998).
[CrossRef]

Ozdur, I.

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P. J. Delfyett, IEEE Photonics Technol. Lett. 22, 431 (2010).
[CrossRef]

Ozharar, S.

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P. J. Delfyett, IEEE Photonics Technol. Lett. 22, 431 (2010).
[CrossRef]

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, J. Opt. A 11, 103001 (2009).
[CrossRef]

P. J. Delfyett, S. Gee, M.-T. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, J. Lightwave Technol. 24, 2701 (2006).
[CrossRef]

Quinlan, F.

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P. J. Delfyett, IEEE Photonics Technol. Lett. 22, 431 (2010).
[CrossRef]

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, J. Opt. A 11, 103001 (2009).
[CrossRef]

P. J. Delfyett, S. Gee, M.-T. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, J. Lightwave Technol. 24, 2701 (2006).
[CrossRef]

Rubiola, E.

E. Rubiola, M. Olivier, and J. Groslambert, IEEE Trans. Instrum. Meas. 41, 353 (1992).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Weiner, A. M.

Yilmaz, T.

Am. J. Phys.

E. D. Black, Am. J. Phys. 69, 79 (2001).
[CrossRef]

Appl. Phys. B

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Appl. Phys. Lett.

K. S. Abedin, N. Onodera, and M. Hyodo, Appl. Phys. Lett. 73, 1311 (1998).
[CrossRef]

IEEE J. Quantum Electron.

K. S. Abedin, N. Onodera, and M. Hyodo, IEEE J. Quantum Electron. 35, 875 (1999).
[CrossRef]

IEEE Photonics Technol. Lett.

I. Ozdur, M. Akbulut, N. Hoghooghi, D. Mandridis, S. Ozharar, F. Quinlan, and P. J. Delfyett, IEEE Photonics Technol. Lett. 22, 431 (2010).
[CrossRef]

IEEE Trans. Instrum. Meas.

E. Rubiola, M. Olivier, and J. Groslambert, IEEE Trans. Instrum. Meas. 41, 353 (1992).
[CrossRef]

J. Lightwave Technol.

J. Opt. A

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, J. Opt. A 11, 103001 (2009).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

CIR, circulator; DBM, double balanced mixer; FPE, Fabry–Perot etalon; ISO, isolator; LPF, low-pass filter; OC, output coupler; PC, polarization controller; PD, photodetector; PID, proportional-integral-differential controller; PM, phase modulator; PS, phase shifter; PZT, piezoelectric transducer (fiber stretcher); SOA, semiconductor optical amplifier.

Fig. 2
Fig. 2

Phase modulation sidebands (black lines) and FPE transmission peaks (red lines). The mode locking occurs owing to the combination of phase modulation and periodic spectral filtering. The finesse of the cavity for this plot is F = 100 , and the depth of modulation β = 1.84 rad , for illustration purposes.

Fig. 3
Fig. 3

Mode-locked laser characteristics. (a) Optical spectrum, (b) high-resolution optical spectrum of a single comb line, (c) sampling oscilloscope trace of the photodetected pulse train, (d) mode-locked pulse autocorrelation trace.

Fig. 4
Fig. 4

Heterodyne beat between one mode-locked laser comb line and a cw laser (top) and 40 s spectrogram of the heterodyne beat (bottom).

Fig. 5
Fig. 5

Phase-noise measurement setup.

Fig. 6
Fig. 6

Phase-noise power spectral density of the frequency-divided rf tone and integrated timing jitter. The integrated timing jitter is the same as in the 10.285 GHz signal.

Metrics