Abstract

Recently, a study showed that generating sinusoidal fringe patterns by properly defocusing binary ones can significantly simplify three-dimensional shape measurement system development and drastically improve its speed. However, when the fringe stripes are very wide, it is very difficult for this technique to achieve high-quality measurement. This Letter presents a method to improve this technique by selectively eliminating high-frequency harmonics induced by a squared binary pattern. As a result, better sinusoidal fringe patterns can be generated with a small degree of defocusing even for wide fringe stripes. Simulation and experiments will be presented to verify the performance of this proposed technique.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gorthi and P. Rastogi, Opt. Laser. Eng. 48, 133 (2010).
    [CrossRef]
  2. S. Lei and S. Zhang, Opt. Lett. 34, 3080 (2009).
    [CrossRef] [PubMed]
  3. S. Lei and S. Zhang, Opt. Laser Eng. 48, 561 (2010).
    [CrossRef]
  4. Y. Gong and S. Zhang, Opt. Express 18, 19743 (2010).
    [CrossRef] [PubMed]
  5. S. Zhang, D. van der Weide, and J. Olvier, Opt. Express 18, 9684 (2010).
    [CrossRef] [PubMed]
  6. B. W. Williams, Principles and Elements of Power Electronics (Barry W. Williams, 2006).
  7. G. A. Ajubi, J. A. Ayubi, J. M. D. Martino, and J. A. Ferrari, Opt. Lett. 35, 3682 (2010).
    [CrossRef]
  8. D.Malacara, ed., Optical Shop Testing, 3rd ed. (John Wiley and Sons, 2007).
    [CrossRef]
  9. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (John Wiley and Sons, 1998).
  10. V. G. Agelidis, A. Balouktsis, and I. Balouktsis, IEEE Power Electron. Lett. 2, 41 (2004).
    [CrossRef]
  11. J. N. Chiasson, L. M. Tolbert, K. J. Mckenzie, and Z. Du, IEEE Trans. Power Electron. 19, 491 (2004).
    [CrossRef]

2010 (5)

2009 (1)

2004 (2)

V. G. Agelidis, A. Balouktsis, and I. Balouktsis, IEEE Power Electron. Lett. 2, 41 (2004).
[CrossRef]

J. N. Chiasson, L. M. Tolbert, K. J. Mckenzie, and Z. Du, IEEE Trans. Power Electron. 19, 491 (2004).
[CrossRef]

Agelidis, V. G.

V. G. Agelidis, A. Balouktsis, and I. Balouktsis, IEEE Power Electron. Lett. 2, 41 (2004).
[CrossRef]

Ajubi, G. A.

Ayubi, J. A.

Balouktsis, A.

V. G. Agelidis, A. Balouktsis, and I. Balouktsis, IEEE Power Electron. Lett. 2, 41 (2004).
[CrossRef]

Balouktsis, I.

V. G. Agelidis, A. Balouktsis, and I. Balouktsis, IEEE Power Electron. Lett. 2, 41 (2004).
[CrossRef]

Chiasson, J. N.

J. N. Chiasson, L. M. Tolbert, K. J. Mckenzie, and Z. Du, IEEE Trans. Power Electron. 19, 491 (2004).
[CrossRef]

Du, Z.

J. N. Chiasson, L. M. Tolbert, K. J. Mckenzie, and Z. Du, IEEE Trans. Power Electron. 19, 491 (2004).
[CrossRef]

Ferrari, J. A.

Ghiglia, D. C.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (John Wiley and Sons, 1998).

Gong, Y.

Gorthi, S.

S. Gorthi and P. Rastogi, Opt. Laser. Eng. 48, 133 (2010).
[CrossRef]

Lei, S.

S. Lei and S. Zhang, Opt. Laser Eng. 48, 561 (2010).
[CrossRef]

S. Lei and S. Zhang, Opt. Lett. 34, 3080 (2009).
[CrossRef] [PubMed]

Martino, J. M. D.

Mckenzie, K. J.

J. N. Chiasson, L. M. Tolbert, K. J. Mckenzie, and Z. Du, IEEE Trans. Power Electron. 19, 491 (2004).
[CrossRef]

Olvier, J.

Pritt, M. D.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (John Wiley and Sons, 1998).

Rastogi, P.

S. Gorthi and P. Rastogi, Opt. Laser. Eng. 48, 133 (2010).
[CrossRef]

Tolbert, L. M.

J. N. Chiasson, L. M. Tolbert, K. J. Mckenzie, and Z. Du, IEEE Trans. Power Electron. 19, 491 (2004).
[CrossRef]

van der Weide, D.

Williams, B. W.

B. W. Williams, Principles and Elements of Power Electronics (Barry W. Williams, 2006).

Zhang, S.

IEEE Power Electron. Lett. (1)

V. G. Agelidis, A. Balouktsis, and I. Balouktsis, IEEE Power Electron. Lett. 2, 41 (2004).
[CrossRef]

IEEE Trans. Power Electron. (1)

J. N. Chiasson, L. M. Tolbert, K. J. Mckenzie, and Z. Du, IEEE Trans. Power Electron. 19, 491 (2004).
[CrossRef]

Opt. Express (2)

Opt. Laser Eng. (1)

S. Lei and S. Zhang, Opt. Laser Eng. 48, 561 (2010).
[CrossRef]

Opt. Laser. Eng. (1)

S. Gorthi and P. Rastogi, Opt. Laser. Eng. 48, 133 (2010).
[CrossRef]

Opt. Lett. (2)

Other (3)

D.Malacara, ed., Optical Shop Testing, 3rd ed. (John Wiley and Sons, 2007).
[CrossRef]

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (John Wiley and Sons, 1998).

B. W. Williams, Principles and Elements of Power Electronics (Barry W. Williams, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Quarter-wave symmetric OPWM waveform.

Fig. 2
Fig. 2

(a) Cross sections of the SBM, SPWM, and OPWM patterns; (b) corresponding defocused results; (c) rms errors with different fringe pitches.

Fig. 3
Fig. 3

First row shows fringe patterns when P = 120 pixels. (a) SBM pattern, (b) SPWM pattern, (c) OPWM pattern, (d) cross sections of phase errors when P = 120 pixels, (f) rms errors for different fringe pitches.

Fig. 4
Fig. 4

3D shape measurement of a sculpture. The first row shows the results when P = 30 pixels, and the second row shows the results when P = 60 pixels.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( x , y ) = I ( x , y ) + I ( x , y ) cos ( ϕ 2 π / 3 ) ,
I 2 ( x , y ) = I ( x , y ) + I ( x , y ) cos ( ϕ ) ,
I 3 ( x , y ) = I ( x , y ) + I ( x , y ) cos ( ϕ + 2 π / 3 ) ,
ϕ ( x , y ) = tan 1 [ 3 ( I 1 I 3 ) / ( 2 I 2 I 1 I 3 ) ] .
a 0 = 1 2 π θ = 0 2 π f ( θ ) d θ ,
a k = 1 π θ = 0 2 π f ( θ ) cos ( k θ ) d θ ,
b k = 1 π θ = 0 2 π f ( θ ) sin ( k θ ) d θ .
b k = 4 π θ = 0 π / 2 f ( θ ) sin ( k θ ) d θ .
b k = 4 π 0 α 1 sin ( k θ ) d θ 4 π α 1 α 2 sin ( k θ ) d θ + 4 π α 2 α 3 sin ( k θ ) d θ 4 π α n π / 2 sin ( k θ ) d θ .

Metrics