Abstract

Optofluidic devices offer flexibility for a variety of tasks involving biological specimen. We propose a system for three-dimensional (3D) sensing and identification of biological micro-organisms. This system consists of a microfluidic device along with a digital holographic microscope and relevant statistical recognition algorithms. The microfluidic channel is used to house the micro-organisms, while the holographic microscope and a CCD camera record their digital holograms. The holograms can be computationally reconstructed in 3D using a variety of algorithms, such as the Fresnel transform. Statistical recognition algorithms are used to analyze and identify the micro-organisms from the reconstructed wavefront. Experimental results are presented. Because of computational reconstruction of wavefronts in holographic imaging, this technique offers unique advantages that allow one to image micro-organisms within a deep channel while removing the inherent microfluidic-induced aberration through interferometery.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, Opt. Lett. 29, 1787 (2004).
    [CrossRef] [PubMed]
  2. Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
    [CrossRef]
  3. S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, and D. Alfieri, Opt. Express 13, 9935 (2005).
    [CrossRef] [PubMed]
  4. B. Javidi and E. Tajahuerce, Opt. Lett. 25, 610 (2000).
    [CrossRef]
  5. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, Opt. Lett. 30, 468 (2005).
    [CrossRef] [PubMed]
  6. V. Mico, J. Garcia, Z. Zalevsky, and B. Javidi, Opt. Lett. 34, 1492 (2009).
    [CrossRef] [PubMed]
  7. F. Dubois, L. Joannes, and J.-C. Legros, Appl. Opt. 38, 7085(1999).
    [CrossRef]
  8. L. Repetto, E. Piano, and C. Pontiggia, Opt. Lett. 29, 1132(2004).
    [CrossRef] [PubMed]
  9. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, Opt. Express 13, 4492 (2005).
    [CrossRef] [PubMed]
  10. B. Javidi, I. Moon, and S. Yeom, Opt. Photon. News 17, 16(2006).
    [CrossRef]
  11. B. Javidi, I. Moon, and S. Yeom, Opt. Express 14, 12096(2006).
    [CrossRef] [PubMed]
  12. I. Moon and B. Javidi, J. R. Soc. Interface 4, 305 (2007).
    [CrossRef] [PubMed]
  13. A. Ozcan and U. Dmirci, Lab Chip 8, 98 (2008).
    [CrossRef]
  14. Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2009).
  15. D. Kim and B. Javidi, Opt. Express 12, 5539 (2004).
    [CrossRef] [PubMed]
  16. I. Moon and B. Javidi, IEEE Trans. Med. Imaging 27, 1782 (2008).
    [CrossRef] [PubMed]

2009 (1)

2008 (2)

A. Ozcan and U. Dmirci, Lab Chip 8, 98 (2008).
[CrossRef]

I. Moon and B. Javidi, IEEE Trans. Med. Imaging 27, 1782 (2008).
[CrossRef] [PubMed]

2007 (1)

I. Moon and B. Javidi, J. R. Soc. Interface 4, 305 (2007).
[CrossRef] [PubMed]

2006 (3)

B. Javidi, I. Moon, and S. Yeom, Opt. Photon. News 17, 16(2006).
[CrossRef]

B. Javidi, I. Moon, and S. Yeom, Opt. Express 14, 12096(2006).
[CrossRef] [PubMed]

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

2005 (3)

2004 (3)

2000 (1)

1999 (1)

Alfieri, D.

Carapezza, E.

Colomb, T.

Cuche, E.

De Nicola, S.

Depeursinge, C.

Dmirci, U.

A. Ozcan and U. Dmirci, Lab Chip 8, 98 (2008).
[CrossRef]

Dubois, F.

Emery, Y.

Fainman, Y.

Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2009).

Ferraro, P.

Finizio, A.

Frauel, Y.

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Garcia, J.

Javidi, B.

Joannes, L.

Kim, D.

Lee, L.

Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2009).

Legros, J.-C.

Magistretti, P. J.

Marquet, P.

Matoba, O.

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Mico, V.

Moon, I.

I. Moon and B. Javidi, IEEE Trans. Med. Imaging 27, 1782 (2008).
[CrossRef] [PubMed]

I. Moon and B. Javidi, J. R. Soc. Interface 4, 305 (2007).
[CrossRef] [PubMed]

B. Javidi, I. Moon, and S. Yeom, Opt. Photon. News 17, 16(2006).
[CrossRef]

B. Javidi, I. Moon, and S. Yeom, Opt. Express 14, 12096(2006).
[CrossRef] [PubMed]

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, Opt. Express 13, 4492 (2005).
[CrossRef] [PubMed]

Naughton, T.

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Osten, W.

Ozcan, A.

A. Ozcan and U. Dmirci, Lab Chip 8, 98 (2008).
[CrossRef]

Pedrini, G.

Piano, E.

Pierattini, G.

Pontiggia, C.

Psaltis, D.

Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2009).

Rappaz, B.

Repetto, L.

Tahajuerce, E.

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Tajahuerce, E.

Tiziani, H. J.

Yang, C.

Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2009).

Yeom, S.

Zalevsky, Z.

Zhang, Y.

Appl. Opt. (1)

IEEE Trans. Med. Imaging (1)

I. Moon and B. Javidi, IEEE Trans. Med. Imaging 27, 1782 (2008).
[CrossRef] [PubMed]

J. R. Soc. Interface (1)

I. Moon and B. Javidi, J. R. Soc. Interface 4, 305 (2007).
[CrossRef] [PubMed]

Lab Chip (1)

A. Ozcan and U. Dmirci, Lab Chip 8, 98 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Opt. Photon. News (1)

B. Javidi, I. Moon, and S. Yeom, Opt. Photon. News 17, 16(2006).
[CrossRef]

Proc. IEEE (1)

Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, Proc. IEEE 94, 636 (2006).
[CrossRef]

Other (1)

Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Digital holographic microscope along with the microfluid device (M, mirror; MO, microscopic objective; BS, beam splitter).

Fig. 2
Fig. 2

Procedure for identification using the recorded digital holograms of micro-organisms.

Fig. 3
Fig. 3

(a) Example of digital hologram of Euglena acus. (b) Amplitude and phase section images of Euglena acus at 18.75 μm . (c) Example of digital hologram of Chilomanas. (d) Amplitude and phase section images of Chilomanas at 18.75 μm .

Fig. 4
Fig. 4

Statistical sampling distributions of the test statistic MSD for the null hypothesis and unknown input data.

Fig. 5
Fig. 5

Experimental results of R values for five samples of nontraining true class and five samples of false class.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

U ( x , y , d ) = F 1 { filt [ F { U ( x , y , 0 ) } ] e i k 1 λ 2 f X 2 λ 2 f Y 2 z } ,
F p ( u ) = P ( X p ( i ) u ) = # { X p ( i ) u } n ,

Metrics