Abstract

We report a tunable wavelength-division multiplexing (WDM) structure based on two-dimensional silver nanoparticle arrays. The linewidth of the multiple geometric resonances of the arrays is of the order of several nanometers generally, which guarantees high wavelength selectivity. Optical channels can be selectively activated by setting the polarization of the incident wave. The operation wavelength can be tuned from the visible to the near infrared, and the free spectral range can be adjusted from hundreds to tens of nanometers by varying the size of the constituent particles and the interparticle distances. The proposed structure can provide an extinction ratio of 10 and a quality factor of 700. This tunable, easy-to-produce, and subwavelength WDM structure is desirable for plasmonic integrated circuits.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Takahashi, S. Suzuki, and I. Nishi, J. Lightwave Technol. 12, 989 (1994).
    [CrossRef]
  2. K. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
    [CrossRef]
  3. A. Sharkawy, S. Shi, and D. W. Prather, Appl. Opt. 40, 2247 (2001).
    [CrossRef]
  4. Y.-D. Wu, T.-T. Shih, and J.-J. Lee, Appl. Opt. 48, F24 (2009).
    [CrossRef]
  5. J. Dostalek, H. Vaisocherova, and J. Homola, Sens. Actuators B 108, 758 (2005).
    [CrossRef]
  6. Y. Gong, X. Liu, and L. Wang, Opt. Lett. 35, 285 (2010).
    [CrossRef] [PubMed]
  7. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nano Lett. 7, 880 (2007).
    [CrossRef] [PubMed]
  8. S. Zou, N. Janel, and G. C. Schatz, J. Chem. Phys. 120, 10871 (2004).
    [CrossRef] [PubMed]
  9. S. Zou and G. C. Schatz, J. Chem. Phys. 121, 12606 (2004).
    [CrossRef] [PubMed]
  10. J. Li, Y. Gu, and Q. Gong, Opt. Express 18, 17684 (2010).
    [CrossRef] [PubMed]
  11. J. R. Lakowicz, Plasmonics 1, 5 (2006).
    [CrossRef] [PubMed]
  12. G. C. Schatz, M. A. Young, and R. P. Van Duyne, in Surface-Enhanced Raman Scattering: Physics and Applications (2006), pp. 19–45.
    [CrossRef]
  13. G. Pellegrini, G. Mattei, and P. Mazzoldi, Nanotechnology 20, 065201 (2009).
    [CrossRef] [PubMed]
  14. L. Zhao, K. L. Kelly, and G. C. Schatz, J. Phys. Chem. B 107, 7343 (2003).
    [CrossRef]
  15. R. G. Newton, Am. J. Phys. 44, 639 (1976).
    [CrossRef]
  16. D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, E.D.Palik, ed. (Academic, 1985), pp. 350–357.
  17. A. A. Lazarides and G. C. Schatz, J. Phys. Chem. B 104, 460(2000).
    [CrossRef]
  18. B. Auguie and W. L. Barnes, Phys. Rev. Lett. 101, 143902(2008).
    [CrossRef] [PubMed]

2010 (2)

2009 (2)

G. Pellegrini, G. Mattei, and P. Mazzoldi, Nanotechnology 20, 065201 (2009).
[CrossRef] [PubMed]

Y.-D. Wu, T.-T. Shih, and J.-J. Lee, Appl. Opt. 48, F24 (2009).
[CrossRef]

2008 (1)

B. Auguie and W. L. Barnes, Phys. Rev. Lett. 101, 143902(2008).
[CrossRef] [PubMed]

2007 (1)

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nano Lett. 7, 880 (2007).
[CrossRef] [PubMed]

2006 (1)

J. R. Lakowicz, Plasmonics 1, 5 (2006).
[CrossRef] [PubMed]

2005 (1)

J. Dostalek, H. Vaisocherova, and J. Homola, Sens. Actuators B 108, 758 (2005).
[CrossRef]

2004 (2)

S. Zou, N. Janel, and G. C. Schatz, J. Chem. Phys. 120, 10871 (2004).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, J. Chem. Phys. 121, 12606 (2004).
[CrossRef] [PubMed]

2003 (1)

L. Zhao, K. L. Kelly, and G. C. Schatz, J. Phys. Chem. B 107, 7343 (2003).
[CrossRef]

2001 (1)

2000 (1)

A. A. Lazarides and G. C. Schatz, J. Phys. Chem. B 104, 460(2000).
[CrossRef]

1994 (1)

H. Takahashi, S. Suzuki, and I. Nishi, J. Lightwave Technol. 12, 989 (1994).
[CrossRef]

1978 (1)

K. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

1976 (1)

R. G. Newton, Am. J. Phys. 44, 639 (1976).
[CrossRef]

Auguie, B.

B. Auguie and W. L. Barnes, Phys. Rev. Lett. 101, 143902(2008).
[CrossRef] [PubMed]

Barnes, W. L.

B. Auguie and W. L. Barnes, Phys. Rev. Lett. 101, 143902(2008).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nano Lett. 7, 880 (2007).
[CrossRef] [PubMed]

Devaux, E.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nano Lett. 7, 880 (2007).
[CrossRef] [PubMed]

Dostalek, J.

J. Dostalek, H. Vaisocherova, and J. Homola, Sens. Actuators B 108, 758 (2005).
[CrossRef]

Ebbesen, T. W.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nano Lett. 7, 880 (2007).
[CrossRef] [PubMed]

Fujii, Y.

K. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Gong, Q.

Gong, Y.

Gu, Y.

Hill, K.

K. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Homola, J.

J. Dostalek, H. Vaisocherova, and J. Homola, Sens. Actuators B 108, 758 (2005).
[CrossRef]

Hunter, W. R.

D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, E.D.Palik, ed. (Academic, 1985), pp. 350–357.

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, J. Chem. Phys. 120, 10871 (2004).
[CrossRef] [PubMed]

Johnson, D. C.

K. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Kawasaki, B. S.

K. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

Kelly, K. L.

L. Zhao, K. L. Kelly, and G. C. Schatz, J. Phys. Chem. B 107, 7343 (2003).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Plasmonics 1, 5 (2006).
[CrossRef] [PubMed]

Laluet, J.-Y.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nano Lett. 7, 880 (2007).
[CrossRef] [PubMed]

Lazarides, A. A.

A. A. Lazarides and G. C. Schatz, J. Phys. Chem. B 104, 460(2000).
[CrossRef]

Lee, J.-J.

Li, J.

Liu, X.

Lynch, D. W.

D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, E.D.Palik, ed. (Academic, 1985), pp. 350–357.

Mattei, G.

G. Pellegrini, G. Mattei, and P. Mazzoldi, Nanotechnology 20, 065201 (2009).
[CrossRef] [PubMed]

Mazzoldi, P.

G. Pellegrini, G. Mattei, and P. Mazzoldi, Nanotechnology 20, 065201 (2009).
[CrossRef] [PubMed]

Newton, R. G.

R. G. Newton, Am. J. Phys. 44, 639 (1976).
[CrossRef]

Nishi, I.

H. Takahashi, S. Suzuki, and I. Nishi, J. Lightwave Technol. 12, 989 (1994).
[CrossRef]

Pellegrini, G.

G. Pellegrini, G. Mattei, and P. Mazzoldi, Nanotechnology 20, 065201 (2009).
[CrossRef] [PubMed]

Prather, D. W.

Schatz, G. C.

S. Zou and G. C. Schatz, J. Chem. Phys. 121, 12606 (2004).
[CrossRef] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, J. Chem. Phys. 120, 10871 (2004).
[CrossRef] [PubMed]

L. Zhao, K. L. Kelly, and G. C. Schatz, J. Phys. Chem. B 107, 7343 (2003).
[CrossRef]

A. A. Lazarides and G. C. Schatz, J. Phys. Chem. B 104, 460(2000).
[CrossRef]

G. C. Schatz, M. A. Young, and R. P. Van Duyne, in Surface-Enhanced Raman Scattering: Physics and Applications (2006), pp. 19–45.
[CrossRef]

Sharkawy, A.

Shi, S.

Shih, T.-T.

Suzuki, S.

H. Takahashi, S. Suzuki, and I. Nishi, J. Lightwave Technol. 12, 989 (1994).
[CrossRef]

Takahashi, H.

H. Takahashi, S. Suzuki, and I. Nishi, J. Lightwave Technol. 12, 989 (1994).
[CrossRef]

Vaisocherova, H.

J. Dostalek, H. Vaisocherova, and J. Homola, Sens. Actuators B 108, 758 (2005).
[CrossRef]

Van Duyne, R. P.

G. C. Schatz, M. A. Young, and R. P. Van Duyne, in Surface-Enhanced Raman Scattering: Physics and Applications (2006), pp. 19–45.
[CrossRef]

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nano Lett. 7, 880 (2007).
[CrossRef] [PubMed]

Wang, L.

Wu, Y.-D.

Young, M. A.

G. C. Schatz, M. A. Young, and R. P. Van Duyne, in Surface-Enhanced Raman Scattering: Physics and Applications (2006), pp. 19–45.
[CrossRef]

Zhao, L.

L. Zhao, K. L. Kelly, and G. C. Schatz, J. Phys. Chem. B 107, 7343 (2003).
[CrossRef]

Zou, S.

S. Zou and G. C. Schatz, J. Chem. Phys. 121, 12606 (2004).
[CrossRef] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, J. Chem. Phys. 120, 10871 (2004).
[CrossRef] [PubMed]

Am. J. Phys. (1)

R. G. Newton, Am. J. Phys. 44, 639 (1976).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, Appl. Phys. Lett. 32, 647 (1978).
[CrossRef]

J. Chem. Phys. (2)

S. Zou, N. Janel, and G. C. Schatz, J. Chem. Phys. 120, 10871 (2004).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, J. Chem. Phys. 121, 12606 (2004).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

H. Takahashi, S. Suzuki, and I. Nishi, J. Lightwave Technol. 12, 989 (1994).
[CrossRef]

J. Phys. Chem. B (2)

A. A. Lazarides and G. C. Schatz, J. Phys. Chem. B 104, 460(2000).
[CrossRef]

L. Zhao, K. L. Kelly, and G. C. Schatz, J. Phys. Chem. B 107, 7343 (2003).
[CrossRef]

Nano Lett. (1)

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, Nano Lett. 7, 880 (2007).
[CrossRef] [PubMed]

Nanotechnology (1)

G. Pellegrini, G. Mattei, and P. Mazzoldi, Nanotechnology 20, 065201 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

B. Auguie and W. L. Barnes, Phys. Rev. Lett. 101, 143902(2008).
[CrossRef] [PubMed]

Plasmonics (1)

J. R. Lakowicz, Plasmonics 1, 5 (2006).
[CrossRef] [PubMed]

Sens. Actuators B (1)

J. Dostalek, H. Vaisocherova, and J. Homola, Sens. Actuators B 108, 758 (2005).
[CrossRef]

Other (2)

G. C. Schatz, M. A. Young, and R. P. Van Duyne, in Surface-Enhanced Raman Scattering: Physics and Applications (2006), pp. 19–45.
[CrossRef]

D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids, E.D.Palik, ed. (Academic, 1985), pp. 350–357.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of a two-dimensional silver nanoparticle array. (b) Extinction spectra of the array (solid curve) and a single particle (dashed curve). (c) Illumination of cancellation of the real parts of Re(S) and Re(1/α).

Fig. 2
Fig. 2

Extinction spectra of arrays. (a) ϕ varies from 0 to π / 2 . (b) R varies from 80 to 120 nm .

Fig. 3
Fig. 3

Extinction spectra of arrays in which interparticle distances are varied.

Fig. 4
Fig. 4

Extinction spectra of an array in which the middle channel is positioned near 1550 nm .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S = dipoles [ ( 1 i k r i j ) × ( 3 cos 2 θ i j 1 ) e i k r i j r i j 3 + k 2 sin 2 θ i j e i k r i j r i j ] ,

Metrics