Abstract

In this Letter, low-cost radio-over-fiber (ROF) transport systems are proposed and experimentally demonstrated. By utilizing a laser diode (LD) and a local oscillator (LO) to generate coherent multiband optical carriers, as well as a self-composed wavelength selector to separate every two carriers for different ROF transport systems, no any other dedicated LD or electrical frequency upconverting circuit/process is needed in the central station (CS). Compared with current ROF systems, the required numbers of LDs, LOs, and mixers in a CS are significantly reduced. Reducing the number of components not only can simplify the network structure but can also reduce the volume and complexity of the relative logistics. To demonstrate the practice of the proposed ROF transport systems, clear eye diagrams and error-free transmission performance are experimentally presented.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. I. Lin, H. H. Lu, S. J. Tzeng, A. S. Patra, and W. L. Tsai, in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2008), paper JThA65.
  2. A. Chowdhury, H. C. Chien, Y. T. Hsueh, and G. K. Chang, J. Lightwave Technol. 27, 1920 (2009).
    [CrossRef]
  3. J. Yu, M. F. Huang, Z. Jia, A. Chowdhury, H. C. Chien, Z. Dong, W. Jian, and G. K. Chang, in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OTuF 2.
  4. M. F. Huang, J. Y. Senior, Z. Jia, and G. K. Chang, J. Lightwave Technol. 26, 2653 (2008).
    [CrossRef]
  5. H. H. Lu, C. L. Ying, W. I. Lin, Y. W. Chuang, Y. C. Chi, and S. J. Tzeng, Opt. Commun. 273, 389 (2007).
    [CrossRef]
  6. H. Olesen and G. Jacobsen, IEEE J. Quantum Electron. 18, 2069 (1982).
    [CrossRef]
  7. M. Yoshino, N. Miki, N. Yoshimoto, and K. Kumozaki, J. Lightwave Technol. 27, 4524 (2009).
    [CrossRef]

2009 (2)

2008 (1)

2007 (1)

H. H. Lu, C. L. Ying, W. I. Lin, Y. W. Chuang, Y. C. Chi, and S. J. Tzeng, Opt. Commun. 273, 389 (2007).
[CrossRef]

1982 (1)

H. Olesen and G. Jacobsen, IEEE J. Quantum Electron. 18, 2069 (1982).
[CrossRef]

Chang, G. K.

A. Chowdhury, H. C. Chien, Y. T. Hsueh, and G. K. Chang, J. Lightwave Technol. 27, 1920 (2009).
[CrossRef]

M. F. Huang, J. Y. Senior, Z. Jia, and G. K. Chang, J. Lightwave Technol. 26, 2653 (2008).
[CrossRef]

J. Yu, M. F. Huang, Z. Jia, A. Chowdhury, H. C. Chien, Z. Dong, W. Jian, and G. K. Chang, in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OTuF 2.

Chi, Y. C.

H. H. Lu, C. L. Ying, W. I. Lin, Y. W. Chuang, Y. C. Chi, and S. J. Tzeng, Opt. Commun. 273, 389 (2007).
[CrossRef]

Chien, H. C.

A. Chowdhury, H. C. Chien, Y. T. Hsueh, and G. K. Chang, J. Lightwave Technol. 27, 1920 (2009).
[CrossRef]

J. Yu, M. F. Huang, Z. Jia, A. Chowdhury, H. C. Chien, Z. Dong, W. Jian, and G. K. Chang, in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OTuF 2.

Chowdhury, A.

A. Chowdhury, H. C. Chien, Y. T. Hsueh, and G. K. Chang, J. Lightwave Technol. 27, 1920 (2009).
[CrossRef]

J. Yu, M. F. Huang, Z. Jia, A. Chowdhury, H. C. Chien, Z. Dong, W. Jian, and G. K. Chang, in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OTuF 2.

Chuang, Y. W.

H. H. Lu, C. L. Ying, W. I. Lin, Y. W. Chuang, Y. C. Chi, and S. J. Tzeng, Opt. Commun. 273, 389 (2007).
[CrossRef]

Dong, Z.

J. Yu, M. F. Huang, Z. Jia, A. Chowdhury, H. C. Chien, Z. Dong, W. Jian, and G. K. Chang, in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OTuF 2.

Hsueh, Y. T.

Huang, M. F.

M. F. Huang, J. Y. Senior, Z. Jia, and G. K. Chang, J. Lightwave Technol. 26, 2653 (2008).
[CrossRef]

J. Yu, M. F. Huang, Z. Jia, A. Chowdhury, H. C. Chien, Z. Dong, W. Jian, and G. K. Chang, in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OTuF 2.

Jacobsen, G.

H. Olesen and G. Jacobsen, IEEE J. Quantum Electron. 18, 2069 (1982).
[CrossRef]

Jia, Z.

M. F. Huang, J. Y. Senior, Z. Jia, and G. K. Chang, J. Lightwave Technol. 26, 2653 (2008).
[CrossRef]

J. Yu, M. F. Huang, Z. Jia, A. Chowdhury, H. C. Chien, Z. Dong, W. Jian, and G. K. Chang, in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OTuF 2.

Jian, W.

J. Yu, M. F. Huang, Z. Jia, A. Chowdhury, H. C. Chien, Z. Dong, W. Jian, and G. K. Chang, in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OTuF 2.

Kumozaki, K.

Lin, W. I.

H. H. Lu, C. L. Ying, W. I. Lin, Y. W. Chuang, Y. C. Chi, and S. J. Tzeng, Opt. Commun. 273, 389 (2007).
[CrossRef]

W. I. Lin, H. H. Lu, S. J. Tzeng, A. S. Patra, and W. L. Tsai, in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2008), paper JThA65.

Lu, H. H.

H. H. Lu, C. L. Ying, W. I. Lin, Y. W. Chuang, Y. C. Chi, and S. J. Tzeng, Opt. Commun. 273, 389 (2007).
[CrossRef]

W. I. Lin, H. H. Lu, S. J. Tzeng, A. S. Patra, and W. L. Tsai, in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2008), paper JThA65.

Miki, N.

Olesen, H.

H. Olesen and G. Jacobsen, IEEE J. Quantum Electron. 18, 2069 (1982).
[CrossRef]

Patra, A. S.

W. I. Lin, H. H. Lu, S. J. Tzeng, A. S. Patra, and W. L. Tsai, in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2008), paper JThA65.

Senior, J. Y.

Tsai, W. L.

W. I. Lin, H. H. Lu, S. J. Tzeng, A. S. Patra, and W. L. Tsai, in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2008), paper JThA65.

Tzeng, S. J.

H. H. Lu, C. L. Ying, W. I. Lin, Y. W. Chuang, Y. C. Chi, and S. J. Tzeng, Opt. Commun. 273, 389 (2007).
[CrossRef]

W. I. Lin, H. H. Lu, S. J. Tzeng, A. S. Patra, and W. L. Tsai, in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2008), paper JThA65.

Ying, C. L.

H. H. Lu, C. L. Ying, W. I. Lin, Y. W. Chuang, Y. C. Chi, and S. J. Tzeng, Opt. Commun. 273, 389 (2007).
[CrossRef]

Yoshimoto, N.

Yoshino, M.

Yu, J.

J. Yu, M. F. Huang, Z. Jia, A. Chowdhury, H. C. Chien, Z. Dong, W. Jian, and G. K. Chang, in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OTuF 2.

IEEE J. Quantum Electron. (1)

H. Olesen and G. Jacobsen, IEEE J. Quantum Electron. 18, 2069 (1982).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Commun. (1)

H. H. Lu, C. L. Ying, W. I. Lin, Y. W. Chuang, Y. C. Chi, and S. J. Tzeng, Opt. Commun. 273, 389 (2007).
[CrossRef]

Other (2)

J. Yu, M. F. Huang, Z. Jia, A. Chowdhury, H. C. Chien, Z. Dong, W. Jian, and G. K. Chang, in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2010), paper OTuF 2.

W. I. Lin, H. H. Lu, S. J. Tzeng, A. S. Patra, and W. L. Tsai, in Proceedings of Optical Fiber Communication Conference (OFC) (Optical Society of America, 2008), paper JThA65.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram of normal ROF transport systems. (b) Advanced CS structure with the assistance of a low-cost multiband optical carrier generator and self-composed wavelength selector.

Fig. 2
Fig. 2

Relationship between the maximum SNR in the generated multiband optical carriers and the input rf power level.

Fig. 3
Fig. 3

(a) DFB output spectrum when the input rf power level is 1 dBm . (b) DFB output spectrum when the input rf power level is 5 dBm . (c) DFB output spectrum when the input rf power level is 11 dBm . (d) DFB output spectrum when the input rf power level is 17 dBm .

Fig. 4
Fig. 4

Experimental configuration of the proposed ROF transport systems.

Fig. 5
Fig. 5

Measured BER curves as a function of the received optical power level.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = 1 + M sin ( 2 π f m t ) exp { j β cos [ 2 π f m t + ϕ f ( I o , f m ) ] } ,
S ( f ) = n = | J n ( β ) M 4 { J n + 1 ( β ) e j ϕ + J n 1 ( β ) e j ϕ } | 2 δ ( f ( f o + n f m ) ) ,

Metrics