Abstract

We have developed a robust method for the unprecedentedly accurate angstrom-scale detection of local variations of the fiber radius based on the idea suggested by Birks et al. [IEEE Photon. Technol. Lett. IPTLEL1041-1135 12, 182 (2000)]. The method uses an optical microfiber (MF) translated at a small distance along the tested fiber and periodically touching it at measurement points. At these points, the MF transmission spectrum exhibits whispering-gallery-mode (WGM) resonances shifting with the tested fiber radius. A simple and comprehensive optimization scheme, which determines the radius variation without visual recognition of resonances and treats their shifts simultaneously, is developed. The optics of WGM propagation is discussed, and the condition for the validity of the developed method is established.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ibsen and R. I. Laming, in Optical Fiber Communication Conference (Optical Society of America, 1999), paper FA1.
  2. T. A. Birks, P. St.J. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
    [CrossRef]
  3. D. H. Smithgall, L. S. Watkins, and R. E. Frazee, Jr., Appl. Opt. 16, 2395 (1977).
    [CrossRef] [PubMed]
  4. J. Jasapara, E. Monberg, F. DiMarcello, and J. W. Nicholson, Opt. Lett. 28, 601 (2003).
    [CrossRef] [PubMed]
  5. F. Warken and H. Giessen, Opt. Lett. 29, 1727 (2004).
    [CrossRef] [PubMed]
  6. T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
    [CrossRef]
  7. M. Sumetsky and Y. Dulashko, in Optical Fiber Communication Conference (Optical Society of America, 2006), paper OTuL6.
  8. The WGM resonances, which are observed for conventional fibers with radii ∼50μm or larger, are very narrow (see, e.g., sample transmission spectra in Fig. ). The fine structure of these resonances is significantly different from the resonance structure of a tapered fiber with radius of ∼10μm considered in , which has much wider transmission resonances.
  9. M. Sumetsky, Y. Dulashko, and A. Hale, Opt. Express 12, 3521 (2004).
    [CrossRef] [PubMed]
  10. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and J. W. Nicholson, Opt. Lett. 31, 2393 (2006).
    [CrossRef] [PubMed]
  11. I. M. White and X. Fan, Opt. Express 16, 1020 (2008).
    [CrossRef] [PubMed]
  12. M. Sumetsky, Opt. Lett. 35, 2385 (2010).
    [CrossRef] [PubMed]
  13. M. Sumetsky, Opt. Lett. 29, 8 (2004).
    [CrossRef] [PubMed]
  14. M. Sumetsky, Opt. Express 17, 7196 (2009).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

2008 (1)

2006 (1)

2004 (3)

2003 (1)

2000 (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

1996 (1)

T. A. Birks, P. St.J. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

1977 (1)

Birks, T. A.

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

T. A. Birks, P. St.J. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

Culverhouse, D. O.

T. A. Birks, P. St.J. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

DiMarcello, F.

Dimmick, T. E.

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

Dulashko, Y.

Fan, X.

Fini, J. M.

Frazee, R. E.

Giessen, H.

Hale, A.

Ibsen, M.

M. Ibsen and R. I. Laming, in Optical Fiber Communication Conference (Optical Society of America, 1999), paper FA1.

Jasapara, J.

Knight, J. C.

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

Laming, R. I.

M. Ibsen and R. I. Laming, in Optical Fiber Communication Conference (Optical Society of America, 1999), paper FA1.

Monberg, E.

Nicholson, J. W.

Russell, P. St.J.

T. A. Birks, P. St.J. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

Smithgall, D. H.

Sumetsky, M.

Warken, F.

Watkins, L. S.

White, I. M.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

J. Lightwave Technol. (1)

T. A. Birks, P. St.J. Russell, and D. O. Culverhouse, J. Lightwave Technol. 14, 2519 (1996).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Other (3)

M. Ibsen and R. I. Laming, in Optical Fiber Communication Conference (Optical Society of America, 1999), paper FA1.

M. Sumetsky and Y. Dulashko, in Optical Fiber Communication Conference (Optical Society of America, 2006), paper OTuL6.

The WGM resonances, which are observed for conventional fibers with radii ∼50μm or larger, are very narrow (see, e.g., sample transmission spectra in Fig. ). The fine structure of these resonances is significantly different from the resonance structure of a tapered fiber with radius of ∼10μm considered in , which has much wider transmission resonances.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Illustration of the experimental setup.

Fig. 2
Fig. 2

Sample transmission spectra of (a) fiber A and (b) fiber B. Right-hand-side plots, magnified fractions of spectra outlined by narrow rectangles.

Fig. 3
Fig. 3

Fiber radius variation: (a) along a 5-mm-length segment of fiber A with 200 μm steps, (b) along a 5-mm-length segment of fiber B with 200 μm steps, (c) along a 50-mm-length segment of fiber A with 2 mm steps, (d) along a 50-mm-length segment of fiber B with 2 mm steps. Each plot shows the results of two measurements of the same segment. The shadowed regions show the difference between these two measurements.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ r = r Δ λ / λ .
M n ( G ) ( Δ r ) = m 1 = 1 M m 2 = 1 M exp ( 1 ς 2 | λ m 1 ( n 1 ) λ m 2 ( n ) λ m 2 ( n ) r Δ r | 2 ) .
M n max = M n ( G ) ( Δ r n ) ,
δ r / r β L Q 3 / 2 .
δ r / r ( β L ) 2 Q 2 .

Metrics