Abstract

We demonstrate thermally controlled plasmon resonance modulation of single gold nanoparticles on vanadium dioxide thin films by performing dark-field spectroscopy measurements at different temperatures. The plasmon resonance of the nanoparticles exhibits a significant blueshift in the visible range when the vanadium dioxide film undergoes its insulator-to-metal phase transition around 67°C. More importantly, the resonance shift shows a clear hysteresis, mirroring the behavior of the vanadium dioxide film. At a fixed wavelength, the scattering intensity of Au particles also shows a hysteretic behavior decorated with an overshoot before (after) the insulator–metal (metal–insulator) phase transition of the vanadium dioxide film, suggesting that the nanoparticle is probing local variations in the phase transition.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription