Abstract

Lossless polarizers are conservative nonlinear optical devices that transform unpolarized light into highly polarized light without polarization-dependent losses. The device proposed here consists of an up to 100-m-long segment of nonlinear highly birefringent or unidirectionally spun fiber pumped from the output end by an intense backward-propagating beam. An initially unpolarized (scrambled) signal beam acquires a degree of polarization close to 100% toward the fiber output.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, Opt. Lett. 25, 257 (2000).
    [CrossRef]
  2. J. Fatome, S. Pitois, P. Morin, and G. Millot, Opt. Express 18, 15311 (2010).
    [CrossRef] [PubMed]
  3. A. Picozzi, Opt. Express 16, 17171 (2008).
    [CrossRef] [PubMed]
  4. V. V. Kozlov, J. Nun¯o, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fibers,” J. Opt. Soc. Am. B (to be published).
  5. S. Wabnitz, IEEE Photonics Technol. Lett. 21, 875 (2009).
    [CrossRef]
  6. C. Martijn de Sterke, K. R. Jackson, and B. D. Robert, J. Opt. Soc. Am. B 8, 403 (1991).
    [CrossRef]
  7. E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, Opt. Lett. 35, 2025 (2010).
    [CrossRef] [PubMed]
  8. S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, Europhys. Lett. 70, 88 (2005).
    [CrossRef]
  9. S. Pitois, J. Fatome, and G. Millot, Opt. Express 16, 6646 (2008).
    [CrossRef] [PubMed]
  10. A. A. Amorim, M. V. Tognetti, P. Oliveira, J. L. Silva, L. M. Bernardo, F. X. Kärtner, and H. M. Crespo, Opt. Lett. 34, 3851 (2009).
    [CrossRef] [PubMed]
  11. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, Opt. Express 17, 12174 (2009).
    [CrossRef] [PubMed]

2010 (2)

2009 (3)

2008 (2)

2005 (1)

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, Europhys. Lett. 70, 88 (2005).
[CrossRef]

2000 (1)

1991 (1)

Amorim, A. A.

Assémat, E.

Bennink, R. S.

Bernardo, L. M.

Boyd, R. W.

Chaudhari, C.

Crespo, H. M.

de Sterke, C. Martijn

Fatome, J.

Fisher, R. A.

Haelterman, M.

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, Europhys. Lett. 70, 88 (2005).
[CrossRef]

Heebner, J. E.

Jackson, K. R.

Jauslin, H. R.

E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, Opt. Lett. 35, 2025 (2010).
[CrossRef] [PubMed]

S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, Europhys. Lett. 70, 88 (2005).
[CrossRef]

Kärtner, F. X.

Kozlov, V. V.

V. V. Kozlov, J. Nun¯o, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fibers,” J. Opt. Soc. Am. B (to be published).

Lagrange, S.

Liao, M.

Millot, G.

Morin, P.

Nun¯o, J.

V. V. Kozlov, J. Nun¯o, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fibers,” J. Opt. Soc. Am. B (to be published).

Ohishi, Y.

Oliveira, P.

Picozzi, A.

Pitois, S.

Qin, G.

Robert, B. D.

Silva, J. L.

Sugny, D.

Suzuki, T.

Tognetti, M. V.

Wabnitz, S.

S. Wabnitz, IEEE Photonics Technol. Lett. 21, 875 (2009).
[CrossRef]

V. V. Kozlov, J. Nun¯o, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fibers,” J. Opt. Soc. Am. B (to be published).

Yan, X.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Components of the (normalized) Stokes vector of the output signal beam as a function of the pump beam power, S 1 + (black squares), S 2 + (red circles), S 3 + (green triangles), for the six input SOPs of the pump: (a) ( 0.99 , 0.1, 0.1), (b) (0.99, 0.1, 0.1), (c) (0.1, 0.99 , 0.1), (d) (0.1, 0.99, 0.1), (e) (0.1, 0.1, 0.99 ), (f) (0.1, 0.1, 0.99). ϕ = 0 . The case with ϕ = π / 4 (not shown) demonstrates very similar qualitative as well as quantitative results.

Fig. 2
Fig. 2

DOP D of the output signal beam as a function of the pump beam power for six input SOPs of the pump (same as in Fig. 1): (a) ( 0.99 , 0.1, 0.1) (black squares), (0.1, 0.99 , 0.1) (red circles), (0.1, 0.1, 0.99 ) (green triangles); (b) (0.99, 0.1, 0.1) (black squares), (0.1, 0.99, 0.1) (red circles), (0.1, 0.1, 0.99) (green triangles). ϕ = 0 .

Fig. 3
Fig. 3

Same as in Fig. 2 for ϕ = π / 4 .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ξ S + = S + × J s S + + S + × J x S ,
η S = S × J s S + S × J x S + .
( e 1 e 2 ) = ( cos ϕ 2 i sin ϕ 2 i sin ϕ 2 cos ϕ 2 ) ( e x e y ) .

Metrics