Abstract

We propose and experimentally demonstrate a compact, highly efficient, and negligible cross-talk silicon-on- insulator crossing using a periodic dielectric waveguide. The crossing occupies a footprint of less than 4μm×4μm. Around 0.7dB insertion loss and lower than 40dB, cross talk was achieved experimentally over a broad wavelength range.

© 2010 Optical Society of America

Full Article  |  PDF Article

Corrections

Junbo Feng, Qunqing Li, and Shoushan Fan, "Compact and low cross-talk silicon-on-insulator crossing using periodic dielectric waveguide: erratum," Opt. Lett. 36, 2308-2308 (2011)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-36-12-2308

References

  • View by:
  • |
  • |
  • |

  1. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, J. Lightwave Technol. 17, 1682 (1999).
    [CrossRef]
  2. F. Xu and A. W. Poon, Opt. Express 16, 8649 (2008).
    [CrossRef] [PubMed]
  3. W. Bogaerts, P. Dumon, D. Thourhout, and R. Baets, Opt. Lett. 32, 2801 (2007).
    [CrossRef] [PubMed]
  4. P. Sanchis, P. Villalba, F. Cuesta, A. Håkansson, A. Griol, J. V. Galán, A. Brimont, and J. Martí, Opt. Lett. 34, 2760 (2009).
    [CrossRef] [PubMed]
  5. W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, Appl. Phys. Lett. 96, 111114 (2010).
    [CrossRef]
  6. S. Fan, N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, and J. D. Joannopoulos, J. Opt. Soc. Am. B 12, 1267 (1995).
    [CrossRef]
  7. P. Luan and K. Chang, Opt. Express 14, 3263 (2006).
    [CrossRef] [PubMed]
  8. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett. 24, 711 (1999).
    [CrossRef]

2010 (1)

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, Appl. Phys. Lett. 96, 111114 (2010).
[CrossRef]

2009 (1)

2008 (1)

2007 (1)

2006 (1)

1999 (2)

1995 (1)

Baets, R.

Bogaerts, W.

Brimont, A.

Chang, K.

Chen, J. C.

Chen, L.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, Appl. Phys. Lett. 96, 111114 (2010).
[CrossRef]

Cuesta, F.

Devenyi, A.

Ding, W.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, Appl. Phys. Lett. 96, 111114 (2010).
[CrossRef]

Dumon, P.

Fan, S.

Galán, J. V.

Griol, A.

Håkansson, A.

Haus, H. A.

Joannopoulos, J. D.

Johnson, S. G.

Lee, R. K.

Liu, Y.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, Appl. Phys. Lett. 96, 111114 (2010).
[CrossRef]

Luan, P.

Manolatou, C.

Martí, J.

Meade, R. D.

Poon, A. W.

Sanchis, P.

Scherer, A.

Sun, X.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, Appl. Phys. Lett. 96, 111114 (2010).
[CrossRef]

Tang, D.

W. Ding, D. Tang, Y. Liu, L. Chen, and X. Sun, Appl. Phys. Lett. 96, 111114 (2010).
[CrossRef]

Thourhout, D.

Villalba, P.

Villeneuve, P. R.

Winn, N.

Xu, F.

Xu, Y.

Yariv, A.

Supplementary Material (2)

» Media 1: MOV (3135 KB)     
» Media 2: MOV (1144 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the proposed crossing structure.

Fig. 2
Fig. 2

(a) Band structure (the first and second bands) of the TM modes of the PDWG ( r = 0.2 a ). The part of the dispersion curve inside the shaded region corresponds to the extended modes, which cannot be used to guide light. The upper left corner inset shows the a × 10 a sized supercell, which is used in calculating the band structure. The lower right corner inset shows the mode distribution at w = 0.26 . (b), (c) Transmission and reflection spectra of PDWG with 8 and 15 dielectric cylinders, respectively.

Fig. 3
Fig. 3

(a) Transmission efficiencies of the straight waveguide ( P T ) and crossing waveguide ( P C ) (Media 1). (b) Field distribution of the FDTD simulation result at 1.55 μm (Media 2).

Fig. 4
Fig. 4

(a), (b) Output light spot images on IR CCD of PDWG crossing and plain crossing with input wavelength of 1550 nm . (c), (d) Crossing structures of PDWG crossing and plain crossing. (e), (f) SEM pictures of PDWG crossing and plain crossing.

Fig. 5
Fig. 5

(a) Measurement result of normalized transmission loss and cross talk of PDWG crossing. (b) Measurement result of normalized transmission loss and crosstalk of plain crossing.

Metrics