Abstract

Thanks to a double-frequency phase modulation scheme, we report a vector Brillouin optical time-domain analyzer (BOTDA). This BOTDA has a high immunity level to noise, and it features a phase spectrogram capability. It is well suited for complex situations involving several acoustic resonances, such as high-order longitudinal modes. It has notably been used to characterize a dispersion-shifted fiber, allowing us to report spectrograms with multiple acoustic resonances. A very high 57dB dynamic range is also reported for 100-ns-long pulses simultaneously with a 16cm numerical resolution.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi and M. Tateda, Opt. Lett. 14, 408 (1989).
    [CrossRef] [PubMed]
  2. M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, IEEE Photon. Technol. Lett. 9, 124 (1997).
    [CrossRef]
  3. N. Shibata, K. Okamoto, and Y. Azuma, J. Opt. Soc. Am. B 6, 1167 (1989).
    [CrossRef]
  4. W. Zou, Z. He, M. Kishi, and K. Hotate, Opt. Lett. 32, 600(2007).
    [CrossRef] [PubMed]
  5. J. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, Opt. Lett. 32, 17 (2007).
    [CrossRef]
  6. L. Zou, X. Bao, and L. Chen, Opt. Lett. 28, 2022 (2003).
    [CrossRef] [PubMed]
  7. P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
    [CrossRef]
  8. A. Loayssa, R. Hernández, D. Benito, and S. Galech, Opt. Lett. 29, 638 (2004).
    [CrossRef] [PubMed]
  9. S. Foaleng-Mafang, J.-C. Beugnot, and L. Thévenaz, Proc. SPIE 7503, 75032C (2009).
    [CrossRef]
  10. C. C. Lee, P. W. Chiang, and S. Chi, IEEE Photon. Technol. Lett. 13, 1094 (2001).
    [CrossRef]
  11. F. Mihélic, D. Bacquet, J. Zemmouri, and P. Szriftgiser, Opt. Lett. 35, 432 (2010).
    [CrossRef] [PubMed]
  12. S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thévenaz, IEEE Sens. J. 8, 1268 (2008).
    [CrossRef]
  13. Because of PM to AM conversion, we estimate that for our parameters and an SMF with a 16ps/nm/km dispersion, the 57dB DR would probably be limited for fibers above 2 or 3km. For a longer fiber, one should reduce FLO.
  14. S. Cho, J. Lee, and I. Kwon, Opt. Express 12, 4339 (2004).
    [CrossRef] [PubMed]
  15. A. Brown, B. Colpitts, and K. Brown, J. Lightwave Technol. 25, 381 (2007).
    [CrossRef]
  16. W. Li, X. Bao, Y. Li, and L. Chen, Opt. Express 16, 21616(2008).
    [CrossRef] [PubMed]
  17. T. Sperber, A. Eyal, M. Tur, and L. Thévenaz, Opt. Express 18, 8671 (2010).
    [CrossRef] [PubMed]

2010 (2)

2009 (1)

S. Foaleng-Mafang, J.-C. Beugnot, and L. Thévenaz, Proc. SPIE 7503, 75032C (2009).
[CrossRef]

2008 (2)

W. Li, X. Bao, Y. Li, and L. Chen, Opt. Express 16, 21616(2008).
[CrossRef] [PubMed]

S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thévenaz, IEEE Sens. J. 8, 1268 (2008).
[CrossRef]

2007 (3)

2006 (1)

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

2004 (2)

2003 (1)

2001 (1)

C. C. Lee, P. W. Chiang, and S. Chi, IEEE Photon. Technol. Lett. 13, 1094 (2001).
[CrossRef]

1997 (1)

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, IEEE Photon. Technol. Lett. 9, 124 (1997).
[CrossRef]

1989 (2)

Azuma, Y.

Bacquet, D.

Bao, X.

Benito, D.

Beugnot, J.

Beugnot, J.-C.

S. Foaleng-Mafang, J.-C. Beugnot, and L. Thévenaz, Proc. SPIE 7503, 75032C (2009).
[CrossRef]

Brown, A.

Brown, K.

Chen, L.

Chi, S.

C. C. Lee, P. W. Chiang, and S. Chi, IEEE Photon. Technol. Lett. 13, 1094 (2001).
[CrossRef]

Chiang, P. W.

C. C. Lee, P. W. Chiang, and S. Chi, IEEE Photon. Technol. Lett. 13, 1094 (2001).
[CrossRef]

Cho, S.

Chraplyvy, A. R.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, IEEE Photon. Technol. Lett. 9, 124 (1997).
[CrossRef]

Colpitts, B.

Dainese, P.

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Diaz, S.

S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thévenaz, IEEE Sens. J. 8, 1268 (2008).
[CrossRef]

Eyal, A.

Foaleng-Mafang, S.

S. Foaleng-Mafang, J.-C. Beugnot, and L. Thévenaz, Proc. SPIE 7503, 75032C (2009).
[CrossRef]

Fragnito, H. L.

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Galech, S.

He, Z.

Hernández, R.

Horiguchi, T.

Horowitz, M.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, IEEE Photon. Technol. Lett. 9, 124 (1997).
[CrossRef]

Hotate, K.

Joly, N.

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Khelif, A.

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Kishi, M.

Knight, J. C.

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Kwon, I.

Laude, V.

J. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, Opt. Lett. 32, 17 (2007).
[CrossRef]

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Lee, C. C.

C. C. Lee, P. W. Chiang, and S. Chi, IEEE Photon. Technol. Lett. 13, 1094 (2001).
[CrossRef]

Lee, J.

Li, W.

Li, Y.

Loayssa, A.

Lopez-Amo, M.

S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thévenaz, IEEE Sens. J. 8, 1268 (2008).
[CrossRef]

Mafang, S. Foaleng

S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thévenaz, IEEE Sens. J. 8, 1268 (2008).
[CrossRef]

Maillotte, H.

Mélin, G.

Mihélic, F.

Okamoto, K.

Russell, P. St.J.

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Shibata, N.

Sperber, T.

Sylvestre, T.

Szriftgiser, P.

Tateda, M.

Thévenaz, L.

T. Sperber, A. Eyal, M. Tur, and L. Thévenaz, Opt. Express 18, 8671 (2010).
[CrossRef] [PubMed]

S. Foaleng-Mafang, J.-C. Beugnot, and L. Thévenaz, Proc. SPIE 7503, 75032C (2009).
[CrossRef]

S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thévenaz, IEEE Sens. J. 8, 1268 (2008).
[CrossRef]

Tkach, R. W.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, IEEE Photon. Technol. Lett. 9, 124 (1997).
[CrossRef]

Tur, M.

Wiederhecker, G. S.

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Zemmouri, J.

Zou, L.

Zou, W.

Zyskind, J. L.

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, IEEE Photon. Technol. Lett. 9, 124 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Horowitz, A. R. Chraplyvy, R. W. Tkach, and J. L. Zyskind, IEEE Photon. Technol. Lett. 9, 124 (1997).
[CrossRef]

C. C. Lee, P. W. Chiang, and S. Chi, IEEE Photon. Technol. Lett. 13, 1094 (2001).
[CrossRef]

IEEE Sens. J. (1)

S. Diaz, S. Foaleng Mafang, M. Lopez-Amo, and L. Thévenaz, IEEE Sens. J. 8, 1268 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Phys. (1)

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, Nat. Phys. 2, 388 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (6)

Proc. SPIE (1)

S. Foaleng-Mafang, J.-C. Beugnot, and L. Thévenaz, Proc. SPIE 7503, 75032C (2009).
[CrossRef]

Other (1)

Because of PM to AM conversion, we estimate that for our parameters and an SMF with a 16ps/nm/km dispersion, the 57dB DR would probably be limited for fibers above 2 or 3km. For a longer fiber, one should reduce FLO.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Upper inset, double-frequency phase modulation principle ( F LO , local oscillator frequency; F S , scanned frequency). Sidebands are created at ± F BGS = ± ( F S + F LO ) . When they enter the BGS resonance, they are either amplified or depleted. Lower inset, VBOTDA simplified representation (DFB, 1548 nm distributed-feedback laser diode; EO, intensity electro-optic modulator; EDFA1, 4 W peak output power; EDFA2, 1 10 mW cw; LNA, middle power low-noise amplifier stage 25 dB gain, 1 dB NF; Circ, circulator; OSC, oscilloscope; BPF, 120 GHz bandpass optical filter; PC, polarization controller).

Fig. 2
Fig. 2

Intensity spectrogram of a DSF. Horizontal axis, distance in meters. Vertical axis, F BGS (GHz), 1 MHz step. Although they are well below the main Stokes level (trace labeled 1), higher-order modes are clearly visible (labels 2 to 4). At 100 m , a 50 m section of fiber is heated to 50 °C .

Fig. 3
Fig. 3

Experimental phase spectrogram of multiple acoustic resonances. In addition to the main Stokes lines around 10.52 GHz , three higher-order longitudinal modes are also well resolved. Horizontal axis, distance in meters. Vertical axis, frequency (GHz).

Fig. 4
Fig. 4

(a) Cross sections at the same spatial location ( 20 m ) of the Figs. 2, 3 spectrograms. The phase (red solid curve) undergoes a π jump when crossing the main Stokes line. (b) The same for the two spectrograms of an SMF fiber.

Metrics