Abstract

The theoretical operation and experimental demonstration of a Fourier transform imaging spectropolarimeter for real time measurement of the polarization state of light are presented. The spectropolarimeter uses a Wollaston prism as a birefringent interferometer and two high-order retarders to incorporate channeled polarimetry. Compared with previous instruments, the most significant advantage of the described model is that the complete wavelength-dependent polarization is acquired simultaneously along a one-dimensional spatial image by a single snapshot. Also, we show that, in this configuration, we can benefit from the advantages of the model: it is compact and robust, and the birefringent interferometer has a high throughput.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, Nat. Med. 5, 1209 (1999).
    [CrossRef] [PubMed]
  2. L. Wang, D. Baade, and F. Patat, Science 315, 212 (2007).
    [CrossRef]
  3. K. Oka and T. Kato, Opt. Lett. 24, 1475 (1999).
    [CrossRef]
  4. D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, Opt. Eng. 41, 1048 (2002).
    [CrossRef]
  5. S. H. Jones, F. J. Iannarilli, and P. L. Kebabian, Opt. Express 12, 6559 (2004).
    [CrossRef] [PubMed]
  6. K. Oka and T. Kaneko, Opt. Express 11, 1510 (2003).
    [CrossRef] [PubMed]
  7. M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, Opt. Express 15, 12792 (2007).
    [CrossRef] [PubMed]
  8. W. H. Smith and P. D. Hammer, Appl. Opt. 35, 2902 (1996).
    [CrossRef] [PubMed]
  9. A. R. Harvey and D. W. Fletcher-Holmes, Opt. Express 12, 5368 (2004).
    [CrossRef] [PubMed]
  10. D. Steers, W. Sibbett, and M. J. Padgett, Appl. Opt. 37, 5777 (1998).
    [CrossRef]

2007 (2)

2004 (2)

2003 (1)

2002 (1)

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, Opt. Eng. 41, 1048 (2002).
[CrossRef]

1999 (2)

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, Nat. Med. 5, 1209 (1999).
[CrossRef] [PubMed]

K. Oka and T. Kato, Opt. Lett. 24, 1475 (1999).
[CrossRef]

1998 (1)

1996 (1)

Baade, D.

L. Wang, D. Baade, and F. Patat, Science 315, 212 (2007).
[CrossRef]

Bouma, G. J.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, Nat. Med. 5, 1209 (1999).
[CrossRef] [PubMed]

Dereniak, E. L.

M. W. Kudenov, N. A. Hagen, E. L. Dereniak, and G. R. Gerhart, Opt. Express 15, 12792 (2007).
[CrossRef] [PubMed]

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, Opt. Eng. 41, 1048 (2002).
[CrossRef]

Descour, M.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, Opt. Eng. 41, 1048 (2002).
[CrossRef]

Fletcher-Holmes, D. W.

Garcia, J.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, Opt. Eng. 41, 1048 (2002).
[CrossRef]

Gerhart, G. R.

Groner, W.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, Nat. Med. 5, 1209 (1999).
[CrossRef] [PubMed]

Hagen, N. A.

Hamilton, T.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, Opt. Eng. 41, 1048 (2002).
[CrossRef]

Hammer, P. D.

Harris, A. G.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, Nat. Med. 5, 1209 (1999).
[CrossRef] [PubMed]

Harvey, A. R.

Iannarilli, F. J.

Ince, C.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, Nat. Med. 5, 1209 (1999).
[CrossRef] [PubMed]

Jones, S. H.

Kaneko, T.

Kato, T.

Kebabian, P. L.

Kudenov, M. W.

Locke, A.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, Opt. Eng. 41, 1048 (2002).
[CrossRef]

McMillan, R. W.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, Opt. Eng. 41, 1048 (2002).
[CrossRef]

Messmer, K.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, Nat. Med. 5, 1209 (1999).
[CrossRef] [PubMed]

Nadeau, R. G.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, Nat. Med. 5, 1209 (1999).
[CrossRef] [PubMed]

Oka, K.

Padgett, M. J.

Patat, F.

L. Wang, D. Baade, and F. Patat, Science 315, 212 (2007).
[CrossRef]

Sabatke, D.

D. Sabatke, A. Locke, E. L. Dereniak, M. Descour, J. Garcia, T. Hamilton, and R. W. McMillan, Opt. Eng. 41, 1048 (2002).
[CrossRef]

Sibbett, W.

Smith, W. H.

Steers, D.

Wang, L.

L. Wang, D. Baade, and F. Patat, Science 315, 212 (2007).
[CrossRef]

Winkelman, J. W.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, Nat. Med. 5, 1209 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the developed imaging spectropolarimeter. The optic axes of the polarization elements are indicated by arrows.

Fig. 2
Fig. 2

(a) Experimental setup of the developed imaging spectropolarimeter. (b) Photograph of the core optics.

Fig. 3
Fig. 3

Interferogram captured by the described spectropolarimeter that contains the data related to the input Stokes parameters. (a) Original patterns, (b) interferogram of a single point (constant offset has been eliminated).

Fig. 4
Fig. 4

(a) Demodulated spectrum S 0 ( σ ) , (b) normalized Stokes parameters. Solid and dashed curves show the experimental and theoretical values, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( z ) = σ 2 σ 1 I ( z , σ ) d σ σ 2 σ 1 MS i ( σ ) d σ ,
I ( z ) = σ 2 σ 1 1 + cos ( ϕ z ) 4 { S 0 + 1 2 S 2 [ exp ( i ϕ 2 ) + exp ( i ϕ 2 ) ] + 1 4 [ S 13 exp ( i ( ϕ 1 ϕ 2 ) ) + S 13 * exp ( i ( ϕ 1 ϕ 2 ) ) ] 1 4 [ S 13 exp ( i ( ϕ 1 + ϕ 2 ) ) + S 13 * exp ( i ( ϕ 1 + ϕ 2 ) ) ] } d σ ,
I ( z ) = 1 4 C 0 ( z ) + 1 8 C 2 ( z L 2 ) + 1 8 C 2 * ( z L 2 ) + 1 16 C 1 ( z ( L 1 L 2 ) ) + 1 16 C 1 * ( z ( L 1 L 2 ) ) 1 16 C 3 ( z ( L 1 + L 2 ) ) 1 16 C 3 * ( z ( L 1 + L 2 ) ) .
F 1 ( C 0 ) = 1 4 S 0 ( σ ) ,
F 1 ( C 1 * ) = 1 16 ( S 1 ( σ ) + j S 3 ( σ ) ) exp ( j ( ϕ 1 ϕ 2 ) ) ,
F 1 ( C 2 * ) = 1 8 S 2 ( σ ) exp ( j ϕ 2 ) .

Metrics