Abstract

A recent experiment probing the electronic nonlinearity in the femtosecond filament indicated that the optical Kerr effect not only saturates but even changes its sign at high intensities and thus switches from self-focusing to a strongly defocusing regime. Here we examine, through simulations and experiment, some implications of such a behavior. We perform comparative simulations based on the standard model on one hand and on a model implementing the intensity-dependent Kerr effect on the other. Comparison with an experiment provides a strong indication that of these two Kerr-effect models the standard model is better in capturing the observed length of the filament. However, neither of the models can reproduce length and filament radius. Possible implications are discussed.

© 2010 Optical Society of America

Full Article  |  PDF Article
Related Articles
Infrared femtosecond light filaments in air: simulations and experiments

Arnaud Couairon, Stelios Tzortzakis, Luc Bergé, Michel Franco, Bernard Prade, and André Mysyrowicz
J. Opt. Soc. Am. B 19(5) 1117-1131 (2002)

Pulse chirping and ionization of O2 molecules for the filamentation of femtosecond laser pulses in air

Rachel Nuter and Luc Bergé
J. Opt. Soc. Am. B 23(5) 874-884 (2006)

Self-compression of 2 µm laser filaments

Luc Bergé
Opt. Express 16(26) 21529-21543 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription