Abstract

Ionization-assisted spectral broadening of high-energy 10.6μm laser pulses in a gas-filled hollow waveguide is shown to yield single-cycle pulses with multiterawatt peak powers in the mid-IR. While the highest quality of pulse compression is achieved in the regime of weak ionization, careful management of complex ionization-assisted spectral broadening of guided-wave fields is the key to compressing the output of advanced high-power mid-IR laser sources to single-cycle pulse widths.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Corkum and F. Krausz, Nature Phys. 3, 381 (2007).
    [CrossRef]
  2. T. Tajima and G. Mourou, Phys. Rev. ST Accel. Beams 5, 031301 (2002).
    [CrossRef]
  3. I. V. Pogorelsky, V. Yakimenko, M. Polyanskiy, P. Shkolnikov, M. Ispiryan, D. Neely, P. McKenna, D. Carroll, Z. Najmudin, and L. Willingale, Nuclear Instrum. Methods Phys. Res. A 620, 67 (2010).
    [CrossRef]
  4. D. Haberberger, S. Tochitsky, and C. Joshi, Opt. Express 18, 17865 (2010).
    [CrossRef] [PubMed]
  5. P. B. Corkum, IEEE J. Quantum Electron. 21, 216 (1985).
    [CrossRef]
  6. Z. A. Biglov, V. M. Gordienko, V. T. Platonenko, V. A. Slobodyanyuk, V. D. Taranukhin, and S. Yu. Ten, Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 337 (1991).
  7. M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
    [CrossRef]
  8. V. M. Gordienko, V. T. Platonenko, and A. F. Sterzhantov, Quantum Electron. 39, 663 (2009).
    [CrossRef]
  9. Y. Abe, Y. Matsuura, Y.-W. Shi, Y. Wang, H. Uyama, and M. Miyagi, Opt. Lett. 23, 89 (1998).
    [CrossRef]
  10. J. A. Harrington, Fiber Integrated Opt. 19, 211 (2000).
    [CrossRef]
  11. C. A. Worrell, J. Mater. Sci. 21, 781 (1986).
    [CrossRef]
  12. S. J. Saggese, J. A. Harrington, and G. H. Sigel, Jr., Opt. Lett. 16, 27 (1991).
    [CrossRef] [PubMed]
  13. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
    [CrossRef] [PubMed]
  14. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, Rep. Prog. Phys. 70, 1633 (2007).
    [CrossRef]
  15. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
    [CrossRef]
  16. E. E. Serebryannikov, E. Goulielmakis, and A. M. Zheltikov, New J. Phys. 10, 093001 (2008).
    [CrossRef]
  17. L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964) [Sov. Phys. JETP 20, 1307 (1965)].
  18. G. Tempea and T. Brabec, Opt. Lett. 23, 762 (1998).
    [CrossRef]
  19. G. Tempea and T. Brabec, Opt. Lett. 23, 1286 (1998).
    [CrossRef]

2010 (2)

I. V. Pogorelsky, V. Yakimenko, M. Polyanskiy, P. Shkolnikov, M. Ispiryan, D. Neely, P. McKenna, D. Carroll, Z. Najmudin, and L. Willingale, Nuclear Instrum. Methods Phys. Res. A 620, 67 (2010).
[CrossRef]

D. Haberberger, S. Tochitsky, and C. Joshi, Opt. Express 18, 17865 (2010).
[CrossRef] [PubMed]

2009 (1)

V. M. Gordienko, V. T. Platonenko, and A. F. Sterzhantov, Quantum Electron. 39, 663 (2009).
[CrossRef]

2008 (1)

E. E. Serebryannikov, E. Goulielmakis, and A. M. Zheltikov, New J. Phys. 10, 093001 (2008).
[CrossRef]

2007 (3)

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, Rep. Prog. Phys. 70, 1633 (2007).
[CrossRef]

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[CrossRef]

P. B. Corkum and F. Krausz, Nature Phys. 3, 381 (2007).
[CrossRef]

2002 (2)

T. Tajima and G. Mourou, Phys. Rev. ST Accel. Beams 5, 031301 (2002).
[CrossRef]

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

2000 (1)

J. A. Harrington, Fiber Integrated Opt. 19, 211 (2000).
[CrossRef]

1998 (3)

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

1991 (2)

Z. A. Biglov, V. M. Gordienko, V. T. Platonenko, V. A. Slobodyanyuk, V. D. Taranukhin, and S. Yu. Ten, Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 337 (1991).

S. J. Saggese, J. A. Harrington, and G. H. Sigel, Jr., Opt. Lett. 16, 27 (1991).
[CrossRef] [PubMed]

1986 (1)

C. A. Worrell, J. Mater. Sci. 21, 781 (1986).
[CrossRef]

1985 (1)

P. B. Corkum, IEEE J. Quantum Electron. 21, 216 (1985).
[CrossRef]

1964 (1)

L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964) [Sov. Phys. JETP 20, 1307 (1965)].

Abe, Y.

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Bergé, L.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, Rep. Prog. Phys. 70, 1633 (2007).
[CrossRef]

Biglov, Z. A.

Z. A. Biglov, V. M. Gordienko, V. T. Platonenko, V. A. Slobodyanyuk, V. D. Taranukhin, and S. Yu. Ten, Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 337 (1991).

Brabec, T.

Carroll, D.

I. V. Pogorelsky, V. Yakimenko, M. Polyanskiy, P. Shkolnikov, M. Ispiryan, D. Neely, P. McKenna, D. Carroll, Z. Najmudin, and L. Willingale, Nuclear Instrum. Methods Phys. Res. A 620, 67 (2010).
[CrossRef]

Corkum, P. B.

P. B. Corkum and F. Krausz, Nature Phys. 3, 381 (2007).
[CrossRef]

P. B. Corkum, IEEE J. Quantum Electron. 21, 216 (1985).
[CrossRef]

Couairon, A.

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[CrossRef]

De Silvestri, S.

M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

Fink, Y.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Gordienko, V. M.

V. M. Gordienko, V. T. Platonenko, and A. F. Sterzhantov, Quantum Electron. 39, 663 (2009).
[CrossRef]

Z. A. Biglov, V. M. Gordienko, V. T. Platonenko, V. A. Slobodyanyuk, V. D. Taranukhin, and S. Yu. Ten, Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 337 (1991).

Goulielmakis, E.

E. E. Serebryannikov, E. Goulielmakis, and A. M. Zheltikov, New J. Phys. 10, 093001 (2008).
[CrossRef]

Haberberger, D.

Harrington, J. A.

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Ispiryan, M.

I. V. Pogorelsky, V. Yakimenko, M. Polyanskiy, P. Shkolnikov, M. Ispiryan, D. Neely, P. McKenna, D. Carroll, Z. Najmudin, and L. Willingale, Nuclear Instrum. Methods Phys. Res. A 620, 67 (2010).
[CrossRef]

Joannopoulos, J. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Joshi, C.

Kasparian, J.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, Rep. Prog. Phys. 70, 1633 (2007).
[CrossRef]

Keldysh, L. V.

L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964) [Sov. Phys. JETP 20, 1307 (1965)].

Krausz, F.

P. B. Corkum and F. Krausz, Nature Phys. 3, 381 (2007).
[CrossRef]

Matsuura, Y.

McKenna, P.

I. V. Pogorelsky, V. Yakimenko, M. Polyanskiy, P. Shkolnikov, M. Ispiryan, D. Neely, P. McKenna, D. Carroll, Z. Najmudin, and L. Willingale, Nuclear Instrum. Methods Phys. Res. A 620, 67 (2010).
[CrossRef]

Miyagi, M.

Mourou, G.

T. Tajima and G. Mourou, Phys. Rev. ST Accel. Beams 5, 031301 (2002).
[CrossRef]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[CrossRef]

Najmudin, Z.

I. V. Pogorelsky, V. Yakimenko, M. Polyanskiy, P. Shkolnikov, M. Ispiryan, D. Neely, P. McKenna, D. Carroll, Z. Najmudin, and L. Willingale, Nuclear Instrum. Methods Phys. Res. A 620, 67 (2010).
[CrossRef]

Neely, D.

I. V. Pogorelsky, V. Yakimenko, M. Polyanskiy, P. Shkolnikov, M. Ispiryan, D. Neely, P. McKenna, D. Carroll, Z. Najmudin, and L. Willingale, Nuclear Instrum. Methods Phys. Res. A 620, 67 (2010).
[CrossRef]

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

Nuter, R.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, Rep. Prog. Phys. 70, 1633 (2007).
[CrossRef]

Platonenko, V. T.

V. M. Gordienko, V. T. Platonenko, and A. F. Sterzhantov, Quantum Electron. 39, 663 (2009).
[CrossRef]

Z. A. Biglov, V. M. Gordienko, V. T. Platonenko, V. A. Slobodyanyuk, V. D. Taranukhin, and S. Yu. Ten, Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 337 (1991).

Pogorelsky, I. V.

I. V. Pogorelsky, V. Yakimenko, M. Polyanskiy, P. Shkolnikov, M. Ispiryan, D. Neely, P. McKenna, D. Carroll, Z. Najmudin, and L. Willingale, Nuclear Instrum. Methods Phys. Res. A 620, 67 (2010).
[CrossRef]

Polyanskiy, M.

I. V. Pogorelsky, V. Yakimenko, M. Polyanskiy, P. Shkolnikov, M. Ispiryan, D. Neely, P. McKenna, D. Carroll, Z. Najmudin, and L. Willingale, Nuclear Instrum. Methods Phys. Res. A 620, 67 (2010).
[CrossRef]

Saggese, S. J.

Serebryannikov, E. E.

E. E. Serebryannikov, E. Goulielmakis, and A. M. Zheltikov, New J. Phys. 10, 093001 (2008).
[CrossRef]

Shi, Y.-W.

Shkolnikov, P.

I. V. Pogorelsky, V. Yakimenko, M. Polyanskiy, P. Shkolnikov, M. Ispiryan, D. Neely, P. McKenna, D. Carroll, Z. Najmudin, and L. Willingale, Nuclear Instrum. Methods Phys. Res. A 620, 67 (2010).
[CrossRef]

Sigel, G. H.

Skupin, S.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, Rep. Prog. Phys. 70, 1633 (2007).
[CrossRef]

Slobodyanyuk, V. A.

Z. A. Biglov, V. M. Gordienko, V. T. Platonenko, V. A. Slobodyanyuk, V. D. Taranukhin, and S. Yu. Ten, Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 337 (1991).

Sterzhantov, A. F.

V. M. Gordienko, V. T. Platonenko, and A. F. Sterzhantov, Quantum Electron. 39, 663 (2009).
[CrossRef]

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

Tajima, T.

T. Tajima and G. Mourou, Phys. Rev. ST Accel. Beams 5, 031301 (2002).
[CrossRef]

Taranukhin, V. D.

Z. A. Biglov, V. M. Gordienko, V. T. Platonenko, V. A. Slobodyanyuk, V. D. Taranukhin, and S. Yu. Ten, Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 337 (1991).

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Tempea, G.

Ten, S. Yu.

Z. A. Biglov, V. M. Gordienko, V. T. Platonenko, V. A. Slobodyanyuk, V. D. Taranukhin, and S. Yu. Ten, Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 337 (1991).

Tochitsky, S.

Uyama, H.

Wang, Y.

Willingale, L.

I. V. Pogorelsky, V. Yakimenko, M. Polyanskiy, P. Shkolnikov, M. Ispiryan, D. Neely, P. McKenna, D. Carroll, Z. Najmudin, and L. Willingale, Nuclear Instrum. Methods Phys. Res. A 620, 67 (2010).
[CrossRef]

Wolf, J.-P.

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, Rep. Prog. Phys. 70, 1633 (2007).
[CrossRef]

Worrell, C. A.

C. A. Worrell, J. Mater. Sci. 21, 781 (1986).
[CrossRef]

Yakimenko, V.

I. V. Pogorelsky, V. Yakimenko, M. Polyanskiy, P. Shkolnikov, M. Ispiryan, D. Neely, P. McKenna, D. Carroll, Z. Najmudin, and L. Willingale, Nuclear Instrum. Methods Phys. Res. A 620, 67 (2010).
[CrossRef]

Zheltikov, A. M.

E. E. Serebryannikov, E. Goulielmakis, and A. M. Zheltikov, New J. Phys. 10, 093001 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

Fiber Integrated Opt. (1)

J. A. Harrington, Fiber Integrated Opt. 19, 211 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. B. Corkum, IEEE J. Quantum Electron. 21, 216 (1985).
[CrossRef]

Izv. Akad. Nauk SSSR, Ser. Fiz. (1)

Z. A. Biglov, V. M. Gordienko, V. T. Platonenko, V. A. Slobodyanyuk, V. D. Taranukhin, and S. Yu. Ten, Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 337 (1991).

J. Mater. Sci. (1)

C. A. Worrell, J. Mater. Sci. 21, 781 (1986).
[CrossRef]

Nature (1)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
[CrossRef] [PubMed]

Nature Phys. (1)

P. B. Corkum and F. Krausz, Nature Phys. 3, 381 (2007).
[CrossRef]

New J. Phys. (1)

E. E. Serebryannikov, E. Goulielmakis, and A. M. Zheltikov, New J. Phys. 10, 093001 (2008).
[CrossRef]

Nuclear Instrum. Methods Phys. Res. A (1)

I. V. Pogorelsky, V. Yakimenko, M. Polyanskiy, P. Shkolnikov, M. Ispiryan, D. Neely, P. McKenna, D. Carroll, Z. Najmudin, and L. Willingale, Nuclear Instrum. Methods Phys. Res. A 620, 67 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[CrossRef]

Phys. Rev. ST Accel. Beams (1)

T. Tajima and G. Mourou, Phys. Rev. ST Accel. Beams 5, 031301 (2002).
[CrossRef]

Quantum Electron. (1)

V. M. Gordienko, V. T. Platonenko, and A. F. Sterzhantov, Quantum Electron. 39, 663 (2009).
[CrossRef]

Rep. Prog. Phys. (1)

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, Rep. Prog. Phys. 70, 1633 (2007).
[CrossRef]

Zh. Eksp. Teor. Fiz. (1)

L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964) [Sov. Phys. JETP 20, 1307 (1965)].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Pulse width and (b) compression quality of the compressed output of a hollow waveguide filled with xenon as a function of the input peak intensity: filled symbols, only the linear chirp is compensated; open symbols, ideal chirp compensation to the transform-limited pulse width. Input pulse width is 2 ps . Fiber length is 10 m . Gas pressure inside the fiber: (1) 0.25 atm , (2) 0.50 atm , (3) 0.75 atm , (4) 1 atm . Inner fiber radius: (1) 2.1 mm , (2) 1.5 mm , (3) 1.2 mm , (4) 1 mm . Dashed vertical line, maximum on-axis input intensity used in simulations. Inset in (a), buildup of the electron density induced by a 10.6 μm , 2 ps laser pulse (dashed curve) with an intensity of 12 TW / cm 2 in xenon at 1 atm calculated with (solid curve) and without (dotted curve) impact ionization. Dashed curve, the critical electron density ρ c . Inset in (b), buildup of the electron density in a dielectric waveguide cladding induced by a 10.6 μm , 2 ps laser pulse (dashed curve) with an on-axis intensity of 18.5 TW / cm 2 . The critical electron density ρ c (dotted curve) is achieved by the end of the laser pulse.

Fig. 2
Fig. 2

Spectrum of the fiber output with ionization effects included (solid curve) and switched off (dotted curve), and the spectral profile of the group delay at the fiber output (dashed curve) and upon quadratic phase compensation (dotted-dashed curve) in the regime corresponding to (a) point A and (b) point B. Also shown is the spectrum of the input pulse.

Fig. 3
Fig. 3

Temporal envelopes of the input pulse (dotted-dashed curve; magnifying factor of 10), and compressed output of the hollow fiber at (a) point A and (b) point B upon linear chirp compensation (solid curve) and ideal phase compensation to the transform limit (dashed curve).

Metrics