Abstract

An empirical “guided-mode refraction model” has been invoked to explain the optical attenuation of radiation in an exposed core optical fiber sensor subject to heterogeneous (surface) crystal growth. Based on Fresnel reflectance values at the internal fiber–crystal and crystal–solution interfaces, the model predictions agree with experimental observations of radial loss of radiation from the fiber core through the crystals as well as attenuation of guided radiation as a function of the radiation launch angle into the fiber.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Insights into tunnelling rays: outperforming guided rays in fiber-optic sensing device

Jianjun Ma, Wojtek J. Bock, and Andrea Cusano
Opt. Express 17(9) 7630-7639 (2009)

Excitation of core modes through side coupling to multimode optical fiber by hydrothermal growth of ZnO nanorods for wide angle optical reception

Hoorieh Fallah, Sulaiman W. Harun, Waleed S. Mohammed, and Joydeep Dutta
J. Opt. Soc. Am. B 31(9) 2232-2238 (2014)

Guided-mode-leaky-mode-guided-mode fiber structure and its application to high refractive index sensing

Li Yang, Linlin Xue, Di Che, and Jingren Qian
Opt. Lett. 37(4) 587-589 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription