Abstract

We designed, fabricated, and characterized a thermo-optically tunable compact (10μm×10μm) silicon photonic crystal (PhC) light modulator that operates at around 1.55µm for TE polarization. The operational principle of the device is the modulation of the cutoff frequency in a silicon-based line defect PhC. The cutoff frequency is shifted because of the thermo-optic tuning of the silicon refractive index, which is realized by localized heating on the PhC. The modulator is formed by a triangular lattice array of cylindrical air holes on a silicon-on-insulator wafer. Optical characterization was carried out, and the result clearly showed thermo-optic tuning of the cutoff frequency at around 1.55µm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, J. Lightwave Technol. 15, 505 (1997).
    [CrossRef]
  2. C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, Appl. Phys. Lett. 67, 2448 (1995).
    [CrossRef]
  3. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  4. T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).
    [CrossRef]
  5. E. A. Camargo, H. M. H. Chong, and R. M. De La Rue, Opt. Express 12, 588 (2004).
    [CrossRef] [PubMed]
  6. E. A. Camargo, H. M. H. Chong, and R. M. De La Rue, Appl. Opt. 45, 6507 (2006).
    [CrossRef] [PubMed]
  7. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
    [CrossRef] [PubMed]
  8. D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, Opt. Lett. 33, 147 (2008).
    [CrossRef] [PubMed]
  9. X. Wang, H. Tian, and Y. Ji, J. Opt. 12, 065501 (2010).
    [CrossRef]
  10. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  11. M. T. Tinker and J.-B. Lee, Appl. Phys. Lett. 86, 221111(2005).
    [CrossRef]
  12. M. T. Tinker and J.-B. Lee, Opt. Express 13, 7174 (2005).
    [CrossRef] [PubMed]

2010 (1)

X. Wang, H. Tian, and Y. Ji, J. Opt. 12, 065501 (2010).
[CrossRef]

2008 (1)

2006 (1)

2005 (3)

M. T. Tinker and J.-B. Lee, Appl. Phys. Lett. 86, 221111(2005).
[CrossRef]

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef] [PubMed]

M. T. Tinker and J.-B. Lee, Opt. Express 13, 7174 (2005).
[CrossRef] [PubMed]

2004 (2)

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).
[CrossRef]

E. A. Camargo, H. M. H. Chong, and R. M. De La Rue, Opt. Express 12, 588 (2004).
[CrossRef] [PubMed]

2001 (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

1997 (1)

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, J. Lightwave Technol. 15, 505 (1997).
[CrossRef]

1995 (1)

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, Appl. Phys. Lett. 67, 2448 (1995).
[CrossRef]

1987 (1)

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Baba, T.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).
[CrossRef]

Beggs, D. M.

Camargo, E. A.

Chong, H. M. H.

Cutolo, A.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, J. Lightwave Technol. 15, 505 (1997).
[CrossRef]

De La Rue, R. M.

Gao, Y.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, Appl. Phys. Lett. 67, 2448 (1995).
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef] [PubMed]

Inoshita, K.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).
[CrossRef]

Iodice, M.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, J. Lightwave Technol. 15, 505 (1997).
[CrossRef]

Ji, Y.

X. Wang, H. Tian, and Y. Ji, J. Opt. 12, 065501 (2010).
[CrossRef]

Krauss, T. F.

Kuroki, Y.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).
[CrossRef]

Lee, J.-B.

M. T. Tinker and J.-B. Lee, Appl. Phys. Lett. 86, 221111(2005).
[CrossRef]

M. T. Tinker and J.-B. Lee, Opt. Express 13, 7174 (2005).
[CrossRef] [PubMed]

Li, G. Z.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, Appl. Phys. Lett. 67, 2448 (1995).
[CrossRef]

Liu, E. K.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, Appl. Phys. Lett. 67, 2448 (1995).
[CrossRef]

Liu, X. D.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, Appl. Phys. Lett. 67, 2448 (1995).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef] [PubMed]

Mori, D.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).
[CrossRef]

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

O'Boyle, M.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef] [PubMed]

O'Faolain, L.

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Spirito, P.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, J. Lightwave Technol. 15, 505 (1997).
[CrossRef]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Tian, H.

X. Wang, H. Tian, and Y. Ji, J. Opt. 12, 065501 (2010).
[CrossRef]

Tinker, M. T.

M. T. Tinker and J.-B. Lee, Appl. Phys. Lett. 86, 221111(2005).
[CrossRef]

M. T. Tinker and J.-B. Lee, Opt. Express 13, 7174 (2005).
[CrossRef] [PubMed]

Vlasov, Y. A.

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef] [PubMed]

Wang, X.

X. Wang, H. Tian, and Y. Ji, J. Opt. 12, 065501 (2010).
[CrossRef]

White, T. P.

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Zeni, L.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, J. Lightwave Technol. 15, 505 (1997).
[CrossRef]

Zhao, C. Z.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, Appl. Phys. Lett. 67, 2448 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, Appl. Phys. Lett. 67, 2448 (1995).
[CrossRef]

M. T. Tinker and J.-B. Lee, Appl. Phys. Lett. 86, 221111(2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, IEEE J. Sel. Top. Quantum Electron. 10, 484 (2004).
[CrossRef]

J. Lightwave Technol. (1)

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, J. Lightwave Technol. 15, 505 (1997).
[CrossRef]

J. Opt. (1)

X. Wang, H. Tian, and Y. Ji, J. Opt. 12, 065501 (2010).
[CrossRef]

Nature (1)

Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of thermo-optically tunable PhC light modulator.

Fig. 2
Fig. 2

2D photonic band diagram of line defect PhC along the Γ K direction.

Fig. 3
Fig. 3

2D FDTD simulation results on the PhC light modulator at wavelength of 1540 nm (TE): (a) cutoff at room temperature and (b) transmission at 110 °C .

Fig. 4
Fig. 4

Simulated transmittance spectra of the PhC light modulator at room temperature and at 110 °C .

Fig. 5
Fig. 5

COMSOL simulation results showing the temperature ( ° C ) at the modulator as a function of applied current (mA) on the NiCr heaters.

Fig. 6
Fig. 6

SEM images showing (a) fabricated PhC light modulator with NiCr heater and (b) close-up view of the light modulator.

Fig. 7
Fig. 7

Measured transmittance spectrum of the PhC light modulator at room temperature and at an applied current of 70 mA on both NiCr heaters.

Metrics