Abstract

We present a chip-scale optofluidic interferometric sensor for measuring liquid pressure based on an imaging method. The chip was constructed with a polymer by multilayer soft lithography. It consists of a flexible air gap optical cavity, which, upon illumination by monochromatic light, generates interference patterns that depend on pressure. The pressure was measured by imaging and analyzing the interference patterns. We also employed a pattern recognition algorithm that significantly simplified the calculation and enhanced the measurement reliability. This pressure sensor was demonstrated with a working range of 022psi and an accuracy of ±1.4% of full scale when temperature stabilized.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, Opt. Lett. 31, 885 (2006).
    [CrossRef] [PubMed]
  2. Y. Kim and D. P. Neikirk, IEEE Photon. Technol. Lett. 7, 1471 (1995).
    [CrossRef]
  3. D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
    [CrossRef] [PubMed]
  4. C. Song, N.-T Nguyen, A. K. Asundi, and C. Lee-Ngo Low, Opt. Lett. 34, 3622 (2009).
    [CrossRef] [PubMed]
  5. W. Song and D. Psaltis, Appl. Phys. Lett. 96, 081101 (2010).
    [CrossRef]
  6. Y. Cheng, K. Sugioka, and K. Midorikawa, Opt. Lett. 29, 2007 (2004).
    [CrossRef] [PubMed]
  7. W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, Appl. Phys. Lett. 94, 051117 (2009).
    [CrossRef]
  8. W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, Appl. Phys. Lett. 94, 161110 (2009).
    [CrossRef]

2010 (1)

W. Song and D. Psaltis, Appl. Phys. Lett. 96, 081101 (2010).
[CrossRef]

2009 (3)

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, Appl. Phys. Lett. 94, 051117 (2009).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, Appl. Phys. Lett. 94, 161110 (2009).
[CrossRef]

C. Song, N.-T Nguyen, A. K. Asundi, and C. Lee-Ngo Low, Opt. Lett. 34, 3622 (2009).
[CrossRef] [PubMed]

2006 (2)

2004 (1)

1995 (1)

Y. Kim and D. P. Neikirk, IEEE Photon. Technol. Lett. 7, 1471 (1995).
[CrossRef]

Asundi, A. K.

Cheng, Y.

Cooper, K. L.

Kim, Y.

Y. Kim and D. P. Neikirk, IEEE Photon. Technol. Lett. 7, 1471 (1995).
[CrossRef]

Li, Z.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, Appl. Phys. Lett. 94, 051117 (2009).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, Appl. Phys. Lett. 94, 161110 (2009).
[CrossRef]

Low, C. Lee-Ngo

Midorikawa, K.

Neikirk, D. P.

Y. Kim and D. P. Neikirk, IEEE Photon. Technol. Lett. 7, 1471 (1995).
[CrossRef]

Nguyen, N.-T

Psaltis, D.

W. Song and D. Psaltis, Appl. Phys. Lett. 96, 081101 (2010).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, Appl. Phys. Lett. 94, 161110 (2009).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, Appl. Phys. Lett. 94, 051117 (2009).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

Song, C.

Song, W.

W. Song and D. Psaltis, Appl. Phys. Lett. 96, 081101 (2010).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, Appl. Phys. Lett. 94, 051117 (2009).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, Appl. Phys. Lett. 94, 161110 (2009).
[CrossRef]

Sugioka, K.

Vasdekis, A. E.

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, Appl. Phys. Lett. 94, 051117 (2009).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, Appl. Phys. Lett. 94, 161110 (2009).
[CrossRef]

Wang, A.

Wang, X.

Xu, J.

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

Zhu, Y.

Appl. Phys. Lett. (3)

W. Song and D. Psaltis, Appl. Phys. Lett. 96, 081101 (2010).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, Appl. Phys. Lett. 94, 051117 (2009).
[CrossRef]

W. Song, A. E. Vasdekis, Z. Li, and D. Psaltis, Appl. Phys. Lett. 94, 161110 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Kim and D. P. Neikirk, IEEE Photon. Technol. Lett. 7, 1471 (1995).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, Nature 442, 381 (2006).
[CrossRef] [PubMed]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the pressure sensing apparatus including the chip and an imaging device.

Fig. 2
Fig. 2

(a) Structure of the chip, (b) top view of the chip structures, and (c) picture of the optofluidic chip.

Fig. 3
Fig. 3

(a) Example image of the interference pattern at 3.80 psi . The square of the dashed line indicates the correlation area. (b) Intensity profile of the area indicated by the dashed line in the middle of Fig. 3a. (c) Corresponding surface profile of the membrane. (d) Plot of displacement of membrane in center versus the pressure.

Fig. 4
Fig. 4

Plot of the correlation coefficient against the pressure of reference images. The different colors correspond to different measurement points. The insets show the recorded images at the corresponding pressures. The numbers are the measured pressure values obtained from the horizontal position of these maximum peaks.

Fig. 5
Fig. 5

(a) Simulated result of the dependence of the upper limit working range on the image length. (b) Relation between the pressure sensitivity and the membrane thickness. (c) Distribution of the pressure error at different pressures. (d) Drift of measurement value with temperature at different pressure conditions.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 + 2 I 1 I 2 cos ( 4 d π λ + π ) ,
r = i ( A i A m ) ( B i B m ) i ( A i A m ) 2 i ( B i B m ) 2 ,

Metrics