Abstract

We report a laser spectroscopy technique for detecting optical absorption in gases and micro-objects via linked thermal effects and by using a sharp mechanical resonance in a quartz crystal. The performance of this technique is studied using near-IR diode lasers and two gases, pure CO2 and C2H2 diluted in nitrogen. A 7.3×108cm1W/(Hz)1/2 noise equivalent sensitivity to absorption in gases is demonstrated. Based on experimental results, it was estimated that 108 fractional absorption of optical radiation by a micro-object deposited on a thin transparent fiber can be detected.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L.-G. Rosengren, Infrared Phys. 13, 173 (1973).
    [CrossRef]
  2. C. Hartung and R. Jurgeit, Sov. J. Quantum Electron. 8, 1035 (1978).
    [CrossRef]
  3. V. M. Apatin and G. N. Makarov, Appl. Phys. B 28, 367 (1982).
    [CrossRef]
  4. G. T. Fraser, A. S. Pine, and R. D. Suenram, J. Chem. Phys. 88, 6157 (1988).
    [CrossRef]
  5. K. Iqbal, J. N. Dahiya, S. G. Lieb, and J. W. Bevan, Appl. Phys. B 27, 153 (1982).
    [CrossRef]
  6. A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, Opt. Lett. 27, 1902 (2002).
    [CrossRef]
  7. A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, Rev. Sci. Instrum. 76, 043105 (2005).
    [CrossRef]
  8. N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy, Appl. Phys. B 94, 673 (2009).
    [CrossRef]
  9. A. Mandelis, Phys. Today 53, 29 (2000).
    [CrossRef]

2009

N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy, Appl. Phys. B 94, 673 (2009).
[CrossRef]

2005

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, Rev. Sci. Instrum. 76, 043105 (2005).
[CrossRef]

2002

2000

A. Mandelis, Phys. Today 53, 29 (2000).
[CrossRef]

1988

G. T. Fraser, A. S. Pine, and R. D. Suenram, J. Chem. Phys. 88, 6157 (1988).
[CrossRef]

1982

K. Iqbal, J. N. Dahiya, S. G. Lieb, and J. W. Bevan, Appl. Phys. B 27, 153 (1982).
[CrossRef]

V. M. Apatin and G. N. Makarov, Appl. Phys. B 28, 367 (1982).
[CrossRef]

1978

C. Hartung and R. Jurgeit, Sov. J. Quantum Electron. 8, 1035 (1978).
[CrossRef]

1973

L.-G. Rosengren, Infrared Phys. 13, 173 (1973).
[CrossRef]

Apatin, V. M.

V. M. Apatin and G. N. Makarov, Appl. Phys. B 28, 367 (1982).
[CrossRef]

Bakhirkin, Y. A.

Bevan, J. W.

K. Iqbal, J. N. Dahiya, S. G. Lieb, and J. W. Bevan, Appl. Phys. B 27, 153 (1982).
[CrossRef]

Curl, R. F.

Dahiya, J. N.

K. Iqbal, J. N. Dahiya, S. G. Lieb, and J. W. Bevan, Appl. Phys. B 27, 153 (1982).
[CrossRef]

Fraser, G. T.

G. T. Fraser, A. S. Pine, and R. D. Suenram, J. Chem. Phys. 88, 6157 (1988).
[CrossRef]

Hartung, C.

C. Hartung and R. Jurgeit, Sov. J. Quantum Electron. 8, 1035 (1978).
[CrossRef]

Iqbal, K.

K. Iqbal, J. N. Dahiya, S. G. Lieb, and J. W. Bevan, Appl. Phys. B 27, 153 (1982).
[CrossRef]

Jurgeit, R.

C. Hartung and R. Jurgeit, Sov. J. Quantum Electron. 8, 1035 (1978).
[CrossRef]

Kosterev, A. A.

N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy, Appl. Phys. B 94, 673 (2009).
[CrossRef]

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, Rev. Sci. Instrum. 76, 043105 (2005).
[CrossRef]

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, Opt. Lett. 27, 1902 (2002).
[CrossRef]

Lieb, S. G.

K. Iqbal, J. N. Dahiya, S. G. Lieb, and J. W. Bevan, Appl. Phys. B 27, 153 (1982).
[CrossRef]

Makarov, G. N.

V. M. Apatin and G. N. Makarov, Appl. Phys. B 28, 367 (1982).
[CrossRef]

Malinovsky, A. L.

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, Rev. Sci. Instrum. 76, 043105 (2005).
[CrossRef]

Mandelis, A.

A. Mandelis, Phys. Today 53, 29 (2000).
[CrossRef]

Minkoff, S. E.

N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy, Appl. Phys. B 94, 673 (2009).
[CrossRef]

Morozov, I. V.

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, Rev. Sci. Instrum. 76, 043105 (2005).
[CrossRef]

Petra, N.

N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy, Appl. Phys. B 94, 673 (2009).
[CrossRef]

Pine, A. S.

G. T. Fraser, A. S. Pine, and R. D. Suenram, J. Chem. Phys. 88, 6157 (1988).
[CrossRef]

Rosengren, L.-G.

L.-G. Rosengren, Infrared Phys. 13, 173 (1973).
[CrossRef]

Serebryakov, D. V.

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, Rev. Sci. Instrum. 76, 043105 (2005).
[CrossRef]

Suenram, R. D.

G. T. Fraser, A. S. Pine, and R. D. Suenram, J. Chem. Phys. 88, 6157 (1988).
[CrossRef]

Thomazy, D.

N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy, Appl. Phys. B 94, 673 (2009).
[CrossRef]

Tittel, F. K.

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, Rev. Sci. Instrum. 76, 043105 (2005).
[CrossRef]

A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. K. Tittel, Opt. Lett. 27, 1902 (2002).
[CrossRef]

Zweck, J.

N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy, Appl. Phys. B 94, 673 (2009).
[CrossRef]

Appl. Phys. B

V. M. Apatin and G. N. Makarov, Appl. Phys. B 28, 367 (1982).
[CrossRef]

K. Iqbal, J. N. Dahiya, S. G. Lieb, and J. W. Bevan, Appl. Phys. B 27, 153 (1982).
[CrossRef]

N. Petra, J. Zweck, A. A. Kosterev, S. E. Minkoff, and D. Thomazy, Appl. Phys. B 94, 673 (2009).
[CrossRef]

Infrared Phys.

L.-G. Rosengren, Infrared Phys. 13, 173 (1973).
[CrossRef]

J. Chem. Phys.

G. T. Fraser, A. S. Pine, and R. D. Suenram, J. Chem. Phys. 88, 6157 (1988).
[CrossRef]

Opt. Lett.

Phys. Today

A. Mandelis, Phys. Today 53, 29 (2000).
[CrossRef]

Rev. Sci. Instrum.

A. A. Kosterev, F. K. Tittel, D. V. Serebryakov, A. L. Malinovsky, and I. V. Morozov, Rev. Sci. Instrum. 76, 043105 (2005).
[CrossRef]

Sov. J. Quantum Electron.

C. Hartung and R. Jurgeit, Sov. J. Quantum Electron. 8, 1035 (1978).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) QTF used as a ROTADE sensor to detect optical absorption in gases. (b) ROTADE sensor for detecting optical absorption by micro-objects: (1), QTF; (2), excitation radiation; (3), thin transparent fiber; (4), substantial wall; (5), micro-object.

Fig. 2
Fig. 2

Maps of the detected signal from the QTF as a function of the laser beam position, scale in millimeters, with pure CO 2 . The QTF area is shaded. (a) 300 Torr pressure and QEPAS dominates; (b) 20 Torr , ROTADE dominates, and the regions of destructive interference between optothermal and photoacoustic signals are visible.

Fig. 3
Fig. 3

Detected QTF signal as a function of the beam distance from the QTF saddle when the beam is on the symmetry plane of the QTF; 0.5% C 2 H 2 in N 2 , 5 Torr total pressure.

Metrics