Abstract

Direct amplitude and phase shaping of mid-infrared femtosecond pulses is realized with a calomel-based acousto-optic programmable dispersive filter transparent between 0.4 and 20μm. The shaped pulse electric field is fully characterized with high accuracy, using chirped-pulse upconversion and time-encoded arrangement spectral phase interferometry for direct electric field reconstruction techniques. Complex mid-infrared pulse shapes at a center wavelength of 4.9μm are generated with a spectral resolution of 14cm1, which exceeds by a factor of 5 the reported experimental resolutions of calomel-based filters.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Erny, L. Gallmann, and U. Keller, Appl. Phys. B 96, 257 (2009).
    [CrossRef]
  2. D. B. Strasfeld, S.-H. Shim, and M. T. Zanni, Adv. Chem. Phys. 141, 1 (2009).
    [CrossRef]
  3. S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, Opt. Lett. 31, 838 (2006).
    [CrossRef] [PubMed]
  4. M. Tsubouchi and T. Momose, Opt. Commun. 282, 3757(2009).
    [CrossRef]
  5. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, Opt. Lett. 25, 575 (2000).
    [CrossRef]
  6. A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, Appl. Phys. B 81, 177 (2005).
    [CrossRef]
  7. S. Coudreau, D. Kaplan, and P. Tournois, Opt. Lett. 31, 1899 (2006).
    [CrossRef] [PubMed]
  8. P. Tournois, Opt. Commun. 281, 4054 (2008).
    [CrossRef]
  9. C. Barta, Krist. Tech. 5, 541 (1970).
    [CrossRef]
  10. C. Barta, J. Cryst. Growth 65, 351 (1983).
    [CrossRef]
  11. M. Gottlieb, A. Goutzoulis, and N. Singh, Appl. Opt. 26, 4681 (1987).
    [CrossRef] [PubMed]
  12. D. Kaplan and P. Tournois, J. Phys. IV 12, 69 (2002).
  13. I. C. Chang, Electron. Lett. 28, 1255 (1992).
    [CrossRef]
  14. V. B. Voloshinov, Opt. Eng. 31, 2089 (1992).
    [CrossRef]
  15. K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D. M. Jonas, Opt. Lett. 30, 1228 (2005).
    [CrossRef] [PubMed]
  16. K. F. Lee, K. J. Kubarych, A. Bonvalet, and M. Joffre, J. Opt. Soc. Am. B 25, A54 (2008).
    [CrossRef]
  17. K. F. Lee, P. Nuernberger, A. Bonvalet, and M. Joffre, Opt. Express 17, 18738 (2009).
    [CrossRef]
  18. C. Dorrer and I. A. Walmsley, J. Opt. Soc. Am. B 19, 1019 (2002).
    [CrossRef]

2009 (4)

C. Erny, L. Gallmann, and U. Keller, Appl. Phys. B 96, 257 (2009).
[CrossRef]

D. B. Strasfeld, S.-H. Shim, and M. T. Zanni, Adv. Chem. Phys. 141, 1 (2009).
[CrossRef]

M. Tsubouchi and T. Momose, Opt. Commun. 282, 3757(2009).
[CrossRef]

K. F. Lee, P. Nuernberger, A. Bonvalet, and M. Joffre, Opt. Express 17, 18738 (2009).
[CrossRef]

2008 (2)

2006 (2)

2005 (2)

A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, Appl. Phys. B 81, 177 (2005).
[CrossRef]

K. J. Kubarych, M. Joffre, A. Moore, N. Belabas, and D. M. Jonas, Opt. Lett. 30, 1228 (2005).
[CrossRef] [PubMed]

2002 (2)

C. Dorrer and I. A. Walmsley, J. Opt. Soc. Am. B 19, 1019 (2002).
[CrossRef]

D. Kaplan and P. Tournois, J. Phys. IV 12, 69 (2002).

2000 (1)

1992 (2)

I. C. Chang, Electron. Lett. 28, 1255 (1992).
[CrossRef]

V. B. Voloshinov, Opt. Eng. 31, 2089 (1992).
[CrossRef]

1987 (1)

1983 (1)

C. Barta, J. Cryst. Growth 65, 351 (1983).
[CrossRef]

1970 (1)

C. Barta, Krist. Tech. 5, 541 (1970).
[CrossRef]

Arbouet, A.

A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, Appl. Phys. B 81, 177 (2005).
[CrossRef]

Barman, A.

A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, Appl. Phys. B 81, 177 (2005).
[CrossRef]

Barta, C.

C. Barta, J. Cryst. Growth 65, 351 (1983).
[CrossRef]

C. Barta, Krist. Tech. 5, 541 (1970).
[CrossRef]

Belabas, N.

Bonvalet, A.

Chang, I. C.

I. C. Chang, Electron. Lett. 28, 1255 (1992).
[CrossRef]

Chatel, B.

A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, Appl. Phys. B 81, 177 (2005).
[CrossRef]

Cheng, Z.

Coudreau, S.

Dorrer, C.

Erny, C.

C. Erny, L. Gallmann, and U. Keller, Appl. Phys. B 96, 257 (2009).
[CrossRef]

Fulmer, E. C.

Gallmann, L.

C. Erny, L. Gallmann, and U. Keller, Appl. Phys. B 96, 257 (2009).
[CrossRef]

Girard, B.

A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, Appl. Phys. B 81, 177 (2005).
[CrossRef]

Gottlieb, M.

Goutzoulis, A.

Joffre, M.

Jonas, D. M.

Kaplan, D.

S. Coudreau, D. Kaplan, and P. Tournois, Opt. Lett. 31, 1899 (2006).
[CrossRef] [PubMed]

A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, Appl. Phys. B 81, 177 (2005).
[CrossRef]

D. Kaplan and P. Tournois, J. Phys. IV 12, 69 (2002).

Keller, U.

C. Erny, L. Gallmann, and U. Keller, Appl. Phys. B 96, 257 (2009).
[CrossRef]

Kubarych, K. J.

Laude, V.

Lee, K. F.

Momose, T.

M. Tsubouchi and T. Momose, Opt. Commun. 282, 3757(2009).
[CrossRef]

Monmayrant, A.

A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, Appl. Phys. B 81, 177 (2005).
[CrossRef]

Moore, A.

Nuernberger, P.

Shim, S.-H.

D. B. Strasfeld, S.-H. Shim, and M. T. Zanni, Adv. Chem. Phys. 141, 1 (2009).
[CrossRef]

S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, Opt. Lett. 31, 838 (2006).
[CrossRef] [PubMed]

Singh, N.

Spielmann, C.

Strasfeld, D. B.

D. B. Strasfeld, S.-H. Shim, and M. T. Zanni, Adv. Chem. Phys. 141, 1 (2009).
[CrossRef]

S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, Opt. Lett. 31, 838 (2006).
[CrossRef] [PubMed]

Tournois, P.

Tsubouchi, M.

M. Tsubouchi and T. Momose, Opt. Commun. 282, 3757(2009).
[CrossRef]

Verluise, F.

Voloshinov, V. B.

V. B. Voloshinov, Opt. Eng. 31, 2089 (1992).
[CrossRef]

Walmsley, I. A.

Whitaker, B. J.

A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, Appl. Phys. B 81, 177 (2005).
[CrossRef]

Zanni, M. T.

D. B. Strasfeld, S.-H. Shim, and M. T. Zanni, Adv. Chem. Phys. 141, 1 (2009).
[CrossRef]

S.-H. Shim, D. B. Strasfeld, E. C. Fulmer, and M. T. Zanni, Opt. Lett. 31, 838 (2006).
[CrossRef] [PubMed]

Adv. Chem. Phys. (1)

D. B. Strasfeld, S.-H. Shim, and M. T. Zanni, Adv. Chem. Phys. 141, 1 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

A. Monmayrant, A. Arbouet, B. Girard, B. Chatel, A. Barman, B. J. Whitaker, and D. Kaplan, Appl. Phys. B 81, 177 (2005).
[CrossRef]

C. Erny, L. Gallmann, and U. Keller, Appl. Phys. B 96, 257 (2009).
[CrossRef]

Electron. Lett. (1)

I. C. Chang, Electron. Lett. 28, 1255 (1992).
[CrossRef]

J. Cryst. Growth (1)

C. Barta, J. Cryst. Growth 65, 351 (1983).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. IV (1)

D. Kaplan and P. Tournois, J. Phys. IV 12, 69 (2002).

Krist. Tech. (1)

C. Barta, Krist. Tech. 5, 541 (1970).
[CrossRef]

Opt. Commun. (2)

P. Tournois, Opt. Commun. 281, 4054 (2008).
[CrossRef]

M. Tsubouchi and T. Momose, Opt. Commun. 282, 3757(2009).
[CrossRef]

Opt. Eng. (1)

V. B. Voloshinov, Opt. Eng. 31, 2089 (1992).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Examples of amplitude shaping: (a) spectra of the transmitted MIR pulse with acoustic wave on (dotted curve, I on ) and off (dashed curve, I off ) and the corresponding relative difference (solid curve, ( I off I on ) / I off ); (b) broadband (dashed curve, δ ν FWHM a c = 0.7 MHz ) and a series of narrowband (solid curves, δ ν FWHM a c = 0.03 MHz ) diffraction spectra; (c) spectral interference pattern for double pulse (note the logarithmic y scale); (d) spectral interference pattern for three narrowband pulses with different central frequencies and one broadband pulse.

Fig. 3
Fig. 3

Examples of phase modulations induced by the AOPDF and characterized with TEA-SPIDER. From left to right: quadratic, cubic, and fourth-order applied (dashed lines) and measured (solid lines) phases. Phase error ε is displayed for each phase function. The spectra of the diffracted pulses are shown in the background.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ max = L ( n g d n g i ) c ,
δ ν ˜ = 0.8 c τ max ,

Metrics