Abstract

We demonstrate a method to directly demodulate closed-fringe interferograms using a kind of active contour called a snake. This method can be used to demodulate a single closed-fringe interferogram when its background illumination and/or contrast terms have a spatial frequency similar to the spatial frequency of the equivalent normalized interferogram. Among other cases, this problematic usually appears in interferometry when spurious reflection appears in the interferogram. In these situations, typical Fourier-based methods are of no help. We show a set of simulations and experimental results that prove the effectiveness of the proposed method.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Servin, J. L. Marroquin, and J. A. Quiroga, J. Opt. Soc. Am. A 21, 411 (2004).
    [CrossRef]
  2. M. Servin, J. A. Quiroga, and J. L. Marroquín, J. Opt. Soc. Am. A 20, 925 (2003).
    [CrossRef]
  3. J. Villa, I. De la Rosa, G. Miramontes, and J. A. Quiroga, J. Opt. Soc. Am. A 22, 2766 (2005).
    [CrossRef]
  4. M. Rivera, J. Opt. Soc. Am. A 22, 1170 (2005).
    [CrossRef]
  5. C. Ai and J. Wyant, Appl. Opt. 27, 3039 (1988).
    [CrossRef] [PubMed]
  6. X. Zhong, J. Opt. A 8, 617 (2006).
    [CrossRef]
  7. T. SvobodaJ. Kybic, and V. Hlavac, Image Processing, Analysis and Machine Vision: a MATLAB Companion (Thomson, 2008).
  8. A. Federico and G. H. Kaufmann, Appl. Opt. 45, 1909(2006).
    [CrossRef] [PubMed]

2006

2005

2004

2003

1988

Ai, C.

De la Rosa, I.

Federico, A.

Hlavac, V.

T. SvobodaJ. Kybic, and V. Hlavac, Image Processing, Analysis and Machine Vision: a MATLAB Companion (Thomson, 2008).

Kaufmann, G. H.

Kybic, J.

T. SvobodaJ. Kybic, and V. Hlavac, Image Processing, Analysis and Machine Vision: a MATLAB Companion (Thomson, 2008).

Marroquin, J. L.

Marroquín, J. L.

Miramontes, G.

Quiroga, J. A.

Rivera, M.

Servin, M.

Svoboda, T.

T. SvobodaJ. Kybic, and V. Hlavac, Image Processing, Analysis and Machine Vision: a MATLAB Companion (Thomson, 2008).

Villa, J.

Wyant, J.

Zhong, X.

X. Zhong, J. Opt. A 8, 617 (2006).
[CrossRef]

Supplementary Material (2)

» Media 1: AVI (5106 KB)     
» Media 2: AVI (5687 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Problem fringe pattern to demodulate. (b) Problem fringe pattern superimposed with the detected fringe maxima and minima by the active contours.

Fig. 2
Fig. 2

(a) Problem fringe pattern to demodulate. (b) Problem fringe pattern superimposed with the detected fringe maxima and minima by the active contours.

Fig. 3
Fig. 3

(a) Real shadow-moiré fringe pattern obtained by observing an aeronautical panel with an indentation. (b) Shadow-moiré fringe pattern superimposed with the detected fringe maxima and minima by the active contours.

Fig. 4
Fig. 4

Demodulated phase maps obtained from the fringe patterns shown in Figs. 1a, 2a, 3a and using the same snake parameters α = 5 , β = 3 , κ = 0.4 , and λ = 0.02 .

Fig. 5
Fig. 5

Resultant error maps of the recovered phase for the fringe patterns shown in Figs. 1a, 1b when using (a), (b) the proposed method and (c), (d) the ORE method.

Fig. 6
Fig. 6

Single-frame excerpts from multimedia files showing the fringe detection process for an interferogram (a) without (Media 1) and (b) with (Media 2) noise.

Tables (1)

Tables Icon

Table 1 Computed rms Errors for Fringe Patterns A and B Shown in Figs. 1a, 2a, Respectively, Affected by Different Signal-to-Noise Ratios and Using the ORE and the Proposed Methods

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v ( s , t ) t = α 2 v ( s , t ) s 2 β 4 v ( s , t ) s 4 + κ f E + λ f B ,

Metrics