Abstract

We report a simple and compact implementation for single-pass second-harmonic-generation (SP-SHG) of cw laser radiation, based on a cascaded multicrystal (MC) scheme, that can provide the highest conversion efficiency at any given fundamental power. By deploying a suitable number of identical 30-mm-long MgO:sPPLT crystals in a cascade and a 30W cw Yb-fiber laser at 1064nm as the fundamental source, we demonstrate SP-SHG into the green with a conversion efficiency as high as 56% in the low-power as well as the high-power regime, providing 5.6W of green output for 10W and 13W of green output for 25.1W of input pump power. The MC scheme permits substantial increase in cw SP-SHG efficiency compared to the conventional single-crystal scheme without compromising performance with regard to power stability and beam quality.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. V. Tovstonog, S. Kurimura, and K. Kitamura, Appl. Phys. Lett. 90, 051115 (2007).
    [CrossRef]
  2. S. Sinha, D. S. Hum, K. Urbane, Y.-W. Lee, M. J. F. Digonnet, M. M. Fejer, and R. L. Byer, J. Lightwave Technol. 26, 3866 (2008).
    [CrossRef]
  3. S. V. Tovstonog, S. Kurimura, I. Suzuki, K. Takeno, S. Moriwaki, N. Ohmae, N. Mio, and T. Katagai, Opt. Express 16, 11294 (2008).
    [CrossRef] [PubMed]
  4. G. K. Samanta, S. Chaitanya Kumar, and M. Ebrahim-Zadeh, Opt. Lett. 34, 1561 (2009).
    [CrossRef] [PubMed]
  5. G. Imeshev, M. Proctor, and M. M. Fejer, Opt. Lett. 23, 165 (1998).
    [CrossRef]
  6. S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, Appl. Phys. B 79, 211 (2004).
    [CrossRef]
  7. S. Chaitanya Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, Opt. Express 17, 13711 (2009).
    [CrossRef] [PubMed]
  8. R. Thompson, M. Tu, D. Aveline, N. Lundblad, and L. Maleki, Opt. Express 11, 1709 (2003).
    [CrossRef] [PubMed]
  9. J. M. Yarborough, J. Falk, and C. B. Hitz, Appl. Phys. Lett. 18, 70 (1971).
    [CrossRef]
  10. G. C. Bhar, U. Chatterjee, and P. Datta, Appl. Phys. B 51, 317 (1990).
    [CrossRef]

2009 (2)

2008 (2)

2007 (1)

S. V. Tovstonog, S. Kurimura, and K. Kitamura, Appl. Phys. Lett. 90, 051115 (2007).
[CrossRef]

2004 (1)

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, Appl. Phys. B 79, 211 (2004).
[CrossRef]

2003 (1)

1998 (1)

1990 (1)

G. C. Bhar, U. Chatterjee, and P. Datta, Appl. Phys. B 51, 317 (1990).
[CrossRef]

1971 (1)

J. M. Yarborough, J. Falk, and C. B. Hitz, Appl. Phys. Lett. 18, 70 (1971).
[CrossRef]

Aveline, D.

Bhar, G. C.

G. C. Bhar, U. Chatterjee, and P. Datta, Appl. Phys. B 51, 317 (1990).
[CrossRef]

Byer, R. L.

Chatterjee, U.

G. C. Bhar, U. Chatterjee, and P. Datta, Appl. Phys. B 51, 317 (1990).
[CrossRef]

Datta, P.

G. C. Bhar, U. Chatterjee, and P. Datta, Appl. Phys. B 51, 317 (1990).
[CrossRef]

Digonnet, M. J. F.

Ebrahim-Zadeh, M.

Falk, J.

J. M. Yarborough, J. Falk, and C. B. Hitz, Appl. Phys. Lett. 18, 70 (1971).
[CrossRef]

Fejer, M. M.

Freitag, I.

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, Appl. Phys. B 79, 211 (2004).
[CrossRef]

Hitz, C. B.

J. M. Yarborough, J. Falk, and C. B. Hitz, Appl. Phys. Lett. 18, 70 (1971).
[CrossRef]

Hum, D. S.

Imeshev, G.

Karlsson, H.

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, Appl. Phys. B 79, 211 (2004).
[CrossRef]

Katagai, T.

Kitamura, K.

S. V. Tovstonog, S. Kurimura, and K. Kitamura, Appl. Phys. Lett. 90, 051115 (2007).
[CrossRef]

Kumar, S. Chaitanya

Kurimura, S.

Laurell, F.

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, Appl. Phys. B 79, 211 (2004).
[CrossRef]

Lee, Y.-W.

Lundblad, N.

Maleki, L.

Mio, N.

Moriwaki, S.

Ohmae, N.

Pasiskevicius, V.

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, Appl. Phys. B 79, 211 (2004).
[CrossRef]

Proctor, M.

Samanta, G. K.

Sinha, S.

Spiekermann, S.

S. Spiekermann, F. Laurell, V. Pasiskevicius, H. Karlsson, and I. Freitag, Appl. Phys. B 79, 211 (2004).
[CrossRef]

Suzuki, I.

Takeno, K.

Thompson, R.

Tovstonog, S. V.

Tu, M.

Urbane, K.

Yarborough, J. M.

J. M. Yarborough, J. Falk, and C. B. Hitz, Appl. Phys. Lett. 18, 70 (1971).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental design for MC cw SP-SHG. λ / 2 , half-wave plate; PBS, polarizing beam splitter; L, lens; M, mirrors. X1–X3, MgO:sPPLT crystal in oven.

Fig. 2
Fig. 2

Maximum cw SP-SHG output efficiency obtained in the SC, DC, and MC schemes versus fundamental power. Solid curves are guides to the eye.

Fig. 3
Fig. 3

Variation of conversion efficiency in the MC scheme as a function of average pump power chopped at 510 Hz with a 5.1% duty cycle. Inset, maximum conversion efficiency obtained in the MC scheme under two different focusing conditions. Curves are guides to the eye.

Fig. 4
Fig. 4

Efficiency enhancement factor (ratio of the green power after X3 to that after X1) in the MC scheme verses pump power. Solid lines are guides to the eye. Inset, table shows comparison of maximum SH power and efficiency in SC, DC, and MC schemes at 10 W of pump power.

Metrics