Abstract

A wide tuning technique for mid-IR difference-frequency generation (DFG) with uniform grating periodically poled LiNbO3 (PPLN) is presented. Based on the dispersion property of the PPLN, the quasi-phase matching (QPM) band for the pump can evolve to two separate bands, and the spacing between them can be increased with the decrease of the crystal temperature. Two such separate QPM bands can be used for increasing the idler tuning range when the crystal temperature is set to adapt the pump tuning. With the technique, an idler tuning range of 690nm is experimentally achieved with fiber laser fundamental lights.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. P. Petrov, R. F. Curl, and F. K. Tittel, Appl. Phys. B 66, 531 (1998).
    [CrossRef]
  2. L. Goldberg, W. K. Burns, and R. W. McElhanon, Appl. Phys. Lett. 67, 2910 (1995).
    [CrossRef]
  3. T. Suhara and H. Nishihara, IEEE J. Quantum Electron. 26, 1265 (1990).
    [CrossRef]
  4. T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, Opt. Lett. 32, 1129 (2007).
    [CrossRef] [PubMed]
  5. M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, Opt. Lett. 28, 558 (2003).
    [CrossRef] [PubMed]
  6. D. Richter, D. G. Lancaster, and F. K. Tittel, Appl. Opt. 39, 4444 (2000).
    [CrossRef]
  7. L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, Opt. Commun. 281, 1686 (2008).
    [CrossRef]
  8. C. Fischer and M. W. Sigrist, Top. Appl. Phys. 89, 97 (2003).
  9. J. Jiang, J. H. Chang, S. J. Feng, L. Wei, and Q. H. Mao, Opt. Express 18, 4740 (2010).
    [CrossRef] [PubMed]
  10. T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yunoto, Appl. Phys. Lett. 86, 161106 (2005).
    [CrossRef]
  11. D. H. Jundt, Opt. Lett. 22, 1553 (1997).
    [CrossRef]

2010

2008

L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, Opt. Commun. 281, 1686 (2008).
[CrossRef]

2007

2005

T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yunoto, Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

2003

2000

1998

K. P. Petrov, R. F. Curl, and F. K. Tittel, Appl. Phys. B 66, 531 (1998).
[CrossRef]

1997

1995

L. Goldberg, W. K. Burns, and R. W. McElhanon, Appl. Phys. Lett. 67, 2910 (1995).
[CrossRef]

1990

T. Suhara and H. Nishihara, IEEE J. Quantum Electron. 26, 1265 (1990).
[CrossRef]

Asobe, M.

Burns, W. K.

L. Goldberg, W. K. Burns, and R. W. McElhanon, Appl. Phys. Lett. 67, 2910 (1995).
[CrossRef]

Cao, Z. S.

L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, Opt. Commun. 281, 1686 (2008).
[CrossRef]

Chang, J. H.

Chen, W. D.

L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, Opt. Commun. 281, 1686 (2008).
[CrossRef]

Curl, R. F.

K. P. Petrov, R. F. Curl, and F. K. Tittel, Appl. Phys. B 66, 531 (1998).
[CrossRef]

Deng, L. H.

L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, Opt. Commun. 281, 1686 (2008).
[CrossRef]

Feng, S. J.

Fischer, C.

C. Fischer and M. W. Sigrist, Top. Appl. Phys. 89, 97 (2003).

Gao, X. M.

L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, Opt. Commun. 281, 1686 (2008).
[CrossRef]

Goldberg, L.

L. Goldberg, W. K. Burns, and R. W. McElhanon, Appl. Phys. Lett. 67, 2910 (1995).
[CrossRef]

Gong, Z. B.

L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, Opt. Commun. 281, 1686 (2008).
[CrossRef]

Jiang, J.

Jundt, D. H.

Kanbara, H.

T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yunoto, Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

Lancaster, D. G.

Magari, K.

Mao, Q. H.

McElhanon, R. W.

L. Goldberg, W. K. Burns, and R. W. McElhanon, Appl. Phys. Lett. 67, 2910 (1995).
[CrossRef]

Miyazawa, H.

Nishida, Y.

Nishihara, H.

T. Suhara and H. Nishihara, IEEE J. Quantum Electron. 26, 1265 (1990).
[CrossRef]

Petrov, K. P.

K. P. Petrov, R. F. Curl, and F. K. Tittel, Appl. Phys. B 66, 531 (1998).
[CrossRef]

Richter, D.

Sigrist, M. W.

C. Fischer and M. W. Sigrist, Top. Appl. Phys. 89, 97 (2003).

Suhara, T.

T. Suhara and H. Nishihara, IEEE J. Quantum Electron. 26, 1265 (1990).
[CrossRef]

Suzuki, H.

Tadanaga, O.

Tittel, F. K.

D. Richter, D. G. Lancaster, and F. K. Tittel, Appl. Opt. 39, 4444 (2000).
[CrossRef]

K. P. Petrov, R. F. Curl, and F. K. Tittel, Appl. Phys. B 66, 531 (1998).
[CrossRef]

Umeki, T.

Wei, L.

Yanagawa, T.

T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, Opt. Lett. 32, 1129 (2007).
[CrossRef] [PubMed]

T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yunoto, Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

Yuan, Y. Q.

L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, Opt. Commun. 281, 1686 (2008).
[CrossRef]

Yunoto, J.

T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yunoto, Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

Zhang, W. J.

L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, Opt. Commun. 281, 1686 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. B

K. P. Petrov, R. F. Curl, and F. K. Tittel, Appl. Phys. B 66, 531 (1998).
[CrossRef]

Appl. Phys. Lett.

L. Goldberg, W. K. Burns, and R. W. McElhanon, Appl. Phys. Lett. 67, 2910 (1995).
[CrossRef]

T. Yanagawa, H. Kanbara, O. Tadanaga, M. Asobe, H. Suzuki, and J. Yunoto, Appl. Phys. Lett. 86, 161106 (2005).
[CrossRef]

IEEE J. Quantum Electron.

T. Suhara and H. Nishihara, IEEE J. Quantum Electron. 26, 1265 (1990).
[CrossRef]

Opt. Commun.

L. H. Deng, X. M. Gao, Z. S. Cao, W. D. Chen, Y. Q. Yuan, W. J. Zhang, and Z. B. Gong, Opt. Commun. 281, 1686 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Top. Appl. Phys.

C. Fischer and M. W. Sigrist, Top. Appl. Phys. 89, 97 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Normalized DFG output power for different temperatures when λ s is fixed at 1.58 μm .

Fig. 2
Fig. 2

Optimized QPM temperature as a function of idler wavelength for different signal wavelengths.

Fig. 3
Fig. 3

DFG laser source based on fiber lasers. FLM, fiber loop mirror; LD, laser diode; YDF, ytterbium-doped fiber; EDF, erbium-doped fiber; OC, optical coupler; TFBG, tunable fiber Bragg grating; ISO, isolator; PC, polarization controller; WDM, wavelength division multiplexer; M, collimating lens; CFS, coupling focusing system.

Fig. 4
Fig. 4

Measured tuning properties of the DFG source for the crystal temperature of 128 ° C when λ s is fixed at 1.58 μm .

Fig. 5
Fig. 5

Measured tuning output spectra of the DFG source for λ s fixed at 1.58 μm . (a) tuning operation using the two QPM bands, (b) whole tuning output property.

Metrics