Abstract

We demonstrate orientation-sensitive multimodal nonlinear optical polarizing microscopy capable of probing orientational, polar, and biaxial features of mesomorphic ordering in soft matter. This technique achieves simultaneous imaging in broadband coherent anti-Stokes Raman scattering, multiphoton excitation fluorescence, and multiharmonic generation polarizing microscopy modes and is based on the use of a single femtosecond laser and a photonic crystal fiber as sources of the probing light. We show the viability of this technique for mapping of three-dimensional patterns of molecular orientations and show that images obtained in different microscopy modes are consistent with each other.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge U. Press, 2000).
  2. I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, Chem. Phys. Lett. 336, 88 (2001).
    [CrossRef]
  3. K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. 44, L1066 (2005).
    [CrossRef]
  4. R. S. Pillai, M. Oh-e, H. Yokoyama, C. J. Brakenhoff, and M. Muller, Opt. Express 14, 12976 (2006).
    [CrossRef] [PubMed]
  5. A. Xie and D. A. Higgins, Appl. Phys. Lett. 84, 4014 (2004).
    [CrossRef]
  6. Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, Biophys. J. 92, 3251(2007).
    [CrossRef] [PubMed]
  7. A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, Appl. Phys. Lett. 91, 151905 (2007).
    [CrossRef]
  8. H. Chen, H. Wang, M. N. Slipchenko, Y. Jung, Y. Shi, J. Zhu, K. K. Buhman, and J.-X. Cheng, Opt. Express 17, 1282(2009).
    [CrossRef] [PubMed]
  9. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, J. P. Pezacki, B. K. Thomas, L. Fu, L. Dong, M. E. Fermann, and A. Stolow, Opt. Express 17, 20700 (2009).
    [CrossRef] [PubMed]
  10. I. I. Smalyukh, Mol. Cryst. Liq. Cryst. 477, 23 (2007).
    [CrossRef]
  11. P. S. Salter, G. Carbone, E. J. Botcherby, T. Wilson, S. J. Elston, and E. P. Raynes, Phys. Rev. Lett. 103, 257803(2009).
    [CrossRef]

2009 (3)

2007 (3)

Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, Biophys. J. 92, 3251(2007).
[CrossRef] [PubMed]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, Appl. Phys. Lett. 91, 151905 (2007).
[CrossRef]

I. I. Smalyukh, Mol. Cryst. Liq. Cryst. 477, 23 (2007).
[CrossRef]

2006 (1)

2005 (1)

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. 44, L1066 (2005).
[CrossRef]

2004 (1)

A. Xie and D. A. Higgins, Appl. Phys. Lett. 84, 4014 (2004).
[CrossRef]

2001 (1)

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, Chem. Phys. Lett. 336, 88 (2001).
[CrossRef]

2000 (1)

P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge U. Press, 2000).

Araki, T.

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. 44, L1066 (2005).
[CrossRef]

Botcherby, E. J.

P. S. Salter, G. Carbone, E. J. Botcherby, T. Wilson, S. J. Elston, and E. P. Raynes, Phys. Rev. Lett. 103, 257803(2009).
[CrossRef]

Brakenhoff, C. J.

Buhman, K. K.

Carbone, G.

P. S. Salter, G. Carbone, E. J. Botcherby, T. Wilson, S. J. Elston, and E. P. Raynes, Phys. Rev. Lett. 103, 257803(2009).
[CrossRef]

Chaikin, P. M.

P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge U. Press, 2000).

Chen, H.

Cheng, J.-X.

Dong, L.

Elston, S. J.

P. S. Salter, G. Carbone, E. J. Botcherby, T. Wilson, S. J. Elston, and E. P. Raynes, Phys. Rev. Lett. 103, 257803(2009).
[CrossRef]

Fermann, M. E.

Fu, L.

Fu, Y.

Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, Biophys. J. 92, 3251(2007).
[CrossRef] [PubMed]

Hashimoto, M.

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. 44, L1066 (2005).
[CrossRef]

Higgins, D. A.

A. Xie and D. A. Higgins, Appl. Phys. Lett. 84, 4014 (2004).
[CrossRef]

Jung, Y.

Kachynski, A. V.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, Appl. Phys. Lett. 91, 151905 (2007).
[CrossRef]

Kuzmin, A. N.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, Appl. Phys. Lett. 91, 151905 (2007).
[CrossRef]

Lavrentovich, O. D.

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, Chem. Phys. Lett. 336, 88 (2001).
[CrossRef]

Lubensky, T. C.

P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge U. Press, 2000).

Moffatt, D. J.

Muller, M.

Oh-e, M.

Pegoraro, A. F.

Pezacki, J. P.

Pillai, R. S.

Prasad, P. N.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, Appl. Phys. Lett. 91, 151905 (2007).
[CrossRef]

Raynes, E. P.

P. S. Salter, G. Carbone, E. J. Botcherby, T. Wilson, S. J. Elston, and E. P. Raynes, Phys. Rev. Lett. 103, 257803(2009).
[CrossRef]

Ridsdale, A.

Salter, P. S.

P. S. Salter, G. Carbone, E. J. Botcherby, T. Wilson, S. J. Elston, and E. P. Raynes, Phys. Rev. Lett. 103, 257803(2009).
[CrossRef]

Shi, R.

Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, Biophys. J. 92, 3251(2007).
[CrossRef] [PubMed]

Shi, Y.

Shiyanovskii, S. V.

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, Chem. Phys. Lett. 336, 88 (2001).
[CrossRef]

Slipchenko, M. N.

Smalyukh, I. I.

I. I. Smalyukh, Mol. Cryst. Liq. Cryst. 477, 23 (2007).
[CrossRef]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, Appl. Phys. Lett. 91, 151905 (2007).
[CrossRef]

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, Chem. Phys. Lett. 336, 88 (2001).
[CrossRef]

Stolow, A.

Thomas, B. K.

Wang, H.

Wilson, T.

P. S. Salter, G. Carbone, E. J. Botcherby, T. Wilson, S. J. Elston, and E. P. Raynes, Phys. Rev. Lett. 103, 257803(2009).
[CrossRef]

Xie, A.

A. Xie and D. A. Higgins, Appl. Phys. Lett. 84, 4014 (2004).
[CrossRef]

Yokoyama, H.

Yoshiki, K.

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. 44, L1066 (2005).
[CrossRef]

Zhu, J.

Appl. Phys. Lett. (2)

A. Xie and D. A. Higgins, Appl. Phys. Lett. 84, 4014 (2004).
[CrossRef]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, Appl. Phys. Lett. 91, 151905 (2007).
[CrossRef]

Biophys. J. (1)

Y. Fu, H. Wang, R. Shi, and J.-X. Cheng, Biophys. J. 92, 3251(2007).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

I. I. Smalyukh, S. V. Shiyanovskii, and O. D. Lavrentovich, Chem. Phys. Lett. 336, 88 (2001).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Yoshiki, M. Hashimoto, and T. Araki, Jpn. J. Appl. Phys. 44, L1066 (2005).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

I. I. Smalyukh, Mol. Cryst. Liq. Cryst. 477, 23 (2007).
[CrossRef]

Opt. Express (3)

Phys. Rev. Lett. (1)

P. S. Salter, G. Carbone, E. J. Botcherby, T. Wilson, S. J. Elston, and E. P. Raynes, Phys. Rev. Lett. 103, 257803(2009).
[CrossRef]

Other (1)

P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge U. Press, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the MNOPM setup. The inset shows the spectra (note that intensity scales are different) at marked positions in the setup: A, after the PCF; B, pump/probe pulse at 780 nm ; C, broadband Stokes pulse after the beam combiner. AL, achromatic lenses; BS, beam splitter; CL, collecting lens; DM, dichroic mirror; FI, Faraday isolator; FM, flip mirror; GLP, Glan laser polarizer; HWP, broadband half-wave plate; LPF, long-pass filter; OL, objective lens; PMT, photon multiplier tube; RP, rotating polarizer; SPF, short-pass filter; TNPR, twisted nematic polarization rotator.

Fig. 2
Fig. 2

Simultaneous 3PF and SHG imaging of a SmC* LC. 3PF images first obtained separately for (a), (b) two orthogonal polarizations and then superimposed for (c) in-plane and (d) vertical cross sections. SHG images first obtained separately for (e), (f) two orthogonal polarizations and then superimposed for (g) in-plane and (h) vertical cross sections. (i) Spectra and filter selections corresponding to the images. (j) Spectra showing the excitation pulse and the generated SHG signal. 3PF and SHG signals were forward detected using 417/60 and 535 / 50 nm BPFs, respectively.

Fig. 3
Fig. 3

MNOPM imaging of LC–colloidal composite. (a) Reconstructed smectic layers and n ( r ) around a particle embedded in an aligned S m A LC. (b), (c) 3PF and broadband CARS spectra of 8CB and 2PF spectrum of FITC (note that the scales are different). 3PF images obtained for excitation at 870 nm and detection with a 417 / 60 nm BPF and for (d) X Y , (e) Y Z , and (f) X Z cross sections. CARS-PM images obtained using 780 nm pump and broadband Stokes pulses for excitation and detection using a 661 / 20 nm BPF and for (g) X Y , (h) Y Z , and (i) X Z cross sections. 2PF images of FITC-labeled spheres for excitation at 980 nm and detection with a 535 / 50 nm BPF and for (j) X Y , (k) Y Z , and (l) X Z cross sections. Color coded intensity scale bars are inserted.

Fig. 4
Fig. 4

Cross-sectional images of a cholesteric LC with 10 μm pitch. (a) 2PF image of BTBP-doped cholesteric for excitation at 980 nm and detection with a 535 / 50 nm BPF. (b) Schematics of n ( r ) in a planar cholesteric cell. (c) 2PF spectrum of the BTBP-doped cholesteric LC and 3PF and broadband CARS spectra of an unlabeled cholesteric LC. Images of labeling-free cholesteric LC obtained using (d) 3PF with 870 nm excitation and detection with a 417 / 60 nm BPF and (e) CARS-PM with excitation of 780 nm pump/probe and a broadband Stokes pulses and detection with a 661 / 20 nm BPF.

Metrics