Abstract

We report a dual plane in-line digital holographic microscopy technique that exploits the method of subtraction of average intensity of the entire hologram to suppress the zero-order diffracted wave. Two interferograms are recorded at different planes to eliminate the conjugate image. The experimental results demonstrate successful reconstruction of phase objects as well as of amplitude objects. The two interferograms can be recorded simultaneously, using two CCD or CMOS sensors, in order to increase the acquisition rate. This enhanced acquisition rate, together with the improved reconstruction capability of the proposed method, may find applications in biomedical research for visualization of rapid dynamic processes at the cellular level.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, Opt. Lett. 30, 468 (2005).
    [CrossRef] [PubMed]
  2. M. K. Kim, SPIE Reviews 1, 018005 (2010).
    [CrossRef]
  3. F. Charrière, A. Marian, F. Montfort, J. Kühn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, Opt. Lett. 31, 178 (2006).
    [CrossRef] [PubMed]
  4. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, Appl. Opt. 40, 6177 (2001).
    [CrossRef]
  5. A. Khmaladze, M. Kim, and C.-M. Lo, Opt. Express 16, 10900 (2008).
    [CrossRef] [PubMed]
  6. N. T. Shaked, Y. Zhu, M. T. Rinehart, and A. Wax, Opt. Express 17, 15585 (2009).
    [CrossRef] [PubMed]
  7. N. T. Shaked, M. T. Rinehart, and A. Wax, Opt. Lett. 34, 767 (2009).
    [CrossRef] [PubMed]
  8. A. Nelleri, J. Joseph, and K. Singh, Opt. Lasers Eng. 48, 27 (2010).
    [CrossRef]
  9. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, Opt. Lett. 29, 1787 (2004).
    [CrossRef] [PubMed]
  10. G. Situ, J. P. Ryle, U. Gopinathan, and J. T. Sheridan, Appl. Opt. 47, 711 (2008).
    [CrossRef] [PubMed]
  11. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, Appl. Opt. 45, 836 (2006).
    [CrossRef] [PubMed]

2010 (2)

M. K. Kim, SPIE Reviews 1, 018005 (2010).
[CrossRef]

A. Nelleri, J. Joseph, and K. Singh, Opt. Lasers Eng. 48, 27 (2010).
[CrossRef]

2009 (2)

2008 (2)

2006 (2)

2005 (1)

2004 (1)

2001 (1)

Charrière, F.

Colomb, T.

Cuche, E.

Depeursinge, C.

Emery, Y.

Garcia-Sucerquia, J.

Gopinathan, U.

Jericho, M. H.

Jericho, S. K.

Joseph, J.

A. Nelleri, J. Joseph, and K. Singh, Opt. Lasers Eng. 48, 27 (2010).
[CrossRef]

Kato, J.

Khmaladze, A.

Kim, M.

Kim, M. K.

M. K. Kim, SPIE Reviews 1, 018005 (2010).
[CrossRef]

Klages, P.

Kreuzer, H. J.

Kühn, J.

Lo, C.-M.

Magistretti, P. J.

Marian, A.

Marquet, P.

Mizuno, J.

Montfort, F.

Nelleri, A.

A. Nelleri, J. Joseph, and K. Singh, Opt. Lasers Eng. 48, 27 (2010).
[CrossRef]

Ohta, S.

Osten, W.

Pedrini, G.

Rappaz, B.

Rinehart, M. T.

Ryle, J. P.

Shaked, N. T.

Sheridan, J. T.

Singh, K.

A. Nelleri, J. Joseph, and K. Singh, Opt. Lasers Eng. 48, 27 (2010).
[CrossRef]

Situ, G.

Tiziani, H. J.

Wax, A.

Xu, W.

Yamaguchi, I.

Zhang, Y.

Zhu, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup of dual plane in-line DHM technique. BE, beam expander; M 1 and M 2 , mirrors; BS 1 and BS 2 , beam splitters; MO, microscope objective; FL, field lens; IM, image plane; P1 and P2, two recording planes.

Fig. 2
Fig. 2

Reconstructed images of diffraction phase grating obtained using (a) method described in this paper, (b) weak object-beam approximation [9]. (c) 3D perspective phase profile of the selected region indicated in (a). The vertical bar represents the phase values in radians.

Fig. 3
Fig. 3

Reconstructed images of amplitude object (USAF resolution chart) obtained using (a) method proposed in this Letter, (b) previous method, weak object-beam approximation [9]. (c), (d) pixel intensity values in arbitrary units along the direction of the arrow shown in (a) and (b), respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y , z ) = | 1 + u ( x , y , z ) | 2 = 1 + | u ( x , y , z ) | 2 + u ( x , y , z ) + u * ( x , y , z ) ,
u ( x , y , 0 ) = I 1 { Δ L ( x , y , z ) H ( f x , f y , z ) × [ 1 H ( f x , f y , 2 Δ z ) ] } ,
Δ L ( x , y , z ) = L ( x , y , z ) L ( x , y , z + Δ z ) H ( f x , f y , Δ z ) ,
L ( x , y , z i ) = l ( x , y , z i ) exp [ i 2 π ( f x x + f y y ) ] d x d y ,
l ( x , y , z i ) = I ( x , y , z i ) I avg u ( x , y , z i ) + u * ( x , y , z i ) ,
I avg = 1 N 2 k = 0 N 1 l = 0 N 1 I ( k Δ x , l Δ y ) .
H ( f x , f y , z i ) = exp [ i 2 π z i λ ( 1 λ 2 f x 2 λ 2 f y 2 ) 1 / 2 ] .

Metrics