Abstract

We demonstrate negative radiation pressure on gain medium structures, such that light amplification may cause a nanoscale body to be pulled toward a light source. Optically large gain medium structures, such as slabs and spheres, as well as deep subwavelength bodies, may experience this phenomenon. The threshold gain for radiation pressure reversal is obtained analytically for Rayleigh spheres, thin cylinders, and thin slabs. This threshold vanishes when the gain medium structure is surrounded by a medium with a matched refractive index, thus eliminating the positive scattering forces.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
    [CrossRef]
  2. D. G. Grier, Nature 424, 810 (2003).
    [CrossRef] [PubMed]
  3. T. J. Kippenberg and K. J. Vahala, Science 321, 1172 (2008).
    [CrossRef] [PubMed]
  4. A. Mizrahi and L. Schächter, Opt. Express 13, 9804 (2005).
    [CrossRef] [PubMed]
  5. M. L. Povinelli, M. Lončar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, Opt. Lett. 30, 3042 (2005).
    [CrossRef] [PubMed]
  6. A. Mizrahi, M. Horowitz, and L. Schächter, Phys. Rev. A 78, 023802 (2008).
    [CrossRef]
  7. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, Nature 456, 480 (2008).
    [CrossRef] [PubMed]
  8. A. Mizrahi, K. Ikeda, F. Bonomelli, V. Lomakin, and Y. Fainman, Phys. Rev. A 80, 041804 (2009).
    [CrossRef]
  9. S. Banna, V. Berezovsky, and L. Schächter, Phys. Rev. Lett. 97, 134801 (2006).
    [CrossRef] [PubMed]
  10. S. Banna, A. Mizrahi, and L. Schächter, Laser & Photon. Rev. 3, 97 (2009).
    [CrossRef]
  11. A. Drobnik, K. Łukaszewski, and K. Pieszynski, Opt. Acta 33, 817 (1986).
    [CrossRef]
  12. J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, Phys. Rev. Lett. 66, 3245 (1991).
    [CrossRef] [PubMed]
  13. M. Mansuripur, Opt. Express 12, 5375 (2004).
    [CrossRef] [PubMed]
  14. A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351(1977).
    [CrossRef]
  15. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).
  16. J. A. Stratton, Electromagnetic Theory (Mcgraw-Hill, 1941).
  17. J. R. Arias-González and M. Nieto-Vesperinas, J. Opt. Soc. Am. A 20, 1201 (2003).
    [CrossRef]

2009 (2)

A. Mizrahi, K. Ikeda, F. Bonomelli, V. Lomakin, and Y. Fainman, Phys. Rev. A 80, 041804 (2009).
[CrossRef]

S. Banna, A. Mizrahi, and L. Schächter, Laser & Photon. Rev. 3, 97 (2009).
[CrossRef]

2008 (3)

A. Mizrahi, M. Horowitz, and L. Schächter, Phys. Rev. A 78, 023802 (2008).
[CrossRef]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, Nature 456, 480 (2008).
[CrossRef] [PubMed]

T. J. Kippenberg and K. J. Vahala, Science 321, 1172 (2008).
[CrossRef] [PubMed]

2006 (1)

S. Banna, V. Berezovsky, and L. Schächter, Phys. Rev. Lett. 97, 134801 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

2003 (2)

1991 (1)

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, Phys. Rev. Lett. 66, 3245 (1991).
[CrossRef] [PubMed]

1986 (1)

A. Drobnik, K. Łukaszewski, and K. Pieszynski, Opt. Acta 33, 817 (1986).
[CrossRef]

1977 (1)

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351(1977).
[CrossRef]

1970 (1)

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

1969 (1)

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

1941 (1)

J. A. Stratton, Electromagnetic Theory (Mcgraw-Hill, 1941).

Arias-González, J. R.

Ashkin, A.

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351(1977).
[CrossRef]

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Baehr-Jones, T.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, Nature 456, 480 (2008).
[CrossRef] [PubMed]

Banna, S.

S. Banna, A. Mizrahi, and L. Schächter, Laser & Photon. Rev. 3, 97 (2009).
[CrossRef]

S. Banna, V. Berezovsky, and L. Schächter, Phys. Rev. Lett. 97, 134801 (2006).
[CrossRef] [PubMed]

Berezovsky, V.

S. Banna, V. Berezovsky, and L. Schächter, Phys. Rev. Lett. 97, 134801 (2006).
[CrossRef] [PubMed]

Bonomelli, F.

A. Mizrahi, K. Ikeda, F. Bonomelli, V. Lomakin, and Y. Fainman, Phys. Rev. A 80, 041804 (2009).
[CrossRef]

Capasso, F.

Chen, G.

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, Phys. Rev. Lett. 66, 3245 (1991).
[CrossRef] [PubMed]

Drobnik, A.

A. Drobnik, K. Łukaszewski, and K. Pieszynski, Opt. Acta 33, 817 (1986).
[CrossRef]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351(1977).
[CrossRef]

Fainman, Y.

A. Mizrahi, K. Ikeda, F. Bonomelli, V. Lomakin, and Y. Fainman, Phys. Rev. A 80, 041804 (2009).
[CrossRef]

Grier, D. G.

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

Hochberg, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, Nature 456, 480 (2008).
[CrossRef] [PubMed]

Horowitz, M.

A. Mizrahi, M. Horowitz, and L. Schächter, Phys. Rev. A 78, 023802 (2008).
[CrossRef]

Hu, Z.

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, Phys. Rev. Lett. 66, 3245 (1991).
[CrossRef] [PubMed]

Ibanescu, M.

Ikeda, K.

A. Mizrahi, K. Ikeda, F. Bonomelli, V. Lomakin, and Y. Fainman, Phys. Rev. A 80, 041804 (2009).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

Kimble, H. J.

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, Phys. Rev. Lett. 66, 3245 (1991).
[CrossRef] [PubMed]

Kippenberg, T. J.

T. J. Kippenberg and K. J. Vahala, Science 321, 1172 (2008).
[CrossRef] [PubMed]

Lee, R. B.

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, Phys. Rev. Lett. 66, 3245 (1991).
[CrossRef] [PubMed]

Li, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, Nature 456, 480 (2008).
[CrossRef] [PubMed]

Lomakin, V.

A. Mizrahi, K. Ikeda, F. Bonomelli, V. Lomakin, and Y. Fainman, Phys. Rev. A 80, 041804 (2009).
[CrossRef]

Loncar, M.

Lukaszewski, K.

A. Drobnik, K. Łukaszewski, and K. Pieszynski, Opt. Acta 33, 817 (1986).
[CrossRef]

Mansuripur, M.

Mizrahi, A.

S. Banna, A. Mizrahi, and L. Schächter, Laser & Photon. Rev. 3, 97 (2009).
[CrossRef]

A. Mizrahi, K. Ikeda, F. Bonomelli, V. Lomakin, and Y. Fainman, Phys. Rev. A 80, 041804 (2009).
[CrossRef]

A. Mizrahi, M. Horowitz, and L. Schächter, Phys. Rev. A 78, 023802 (2008).
[CrossRef]

A. Mizrahi and L. Schächter, Opt. Express 13, 9804 (2005).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

Pernice, W. H. P.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, Nature 456, 480 (2008).
[CrossRef] [PubMed]

Pieszynski, K.

A. Drobnik, K. Łukaszewski, and K. Pieszynski, Opt. Acta 33, 817 (1986).
[CrossRef]

Povinelli, M. L.

Schächter, L.

S. Banna, A. Mizrahi, and L. Schächter, Laser & Photon. Rev. 3, 97 (2009).
[CrossRef]

A. Mizrahi, M. Horowitz, and L. Schächter, Phys. Rev. A 78, 023802 (2008).
[CrossRef]

S. Banna, V. Berezovsky, and L. Schächter, Phys. Rev. Lett. 97, 134801 (2006).
[CrossRef] [PubMed]

A. Mizrahi and L. Schächter, Opt. Express 13, 9804 (2005).
[CrossRef] [PubMed]

Smythe, E. J.

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (Mcgraw-Hill, 1941).

Tabosa, J. W. R.

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, Phys. Rev. Lett. 66, 3245 (1991).
[CrossRef] [PubMed]

Tang, H. X.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, Nature 456, 480 (2008).
[CrossRef] [PubMed]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, Science 321, 1172 (2008).
[CrossRef] [PubMed]

Xiong, C.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, Nature 456, 480 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Laser & Photon. Rev. (1)

S. Banna, A. Mizrahi, and L. Schächter, Laser & Photon. Rev. 3, 97 (2009).
[CrossRef]

Nature (2)

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, Nature 456, 480 (2008).
[CrossRef] [PubMed]

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

Opt. Acta (1)

A. Drobnik, K. Łukaszewski, and K. Pieszynski, Opt. Acta 33, 817 (1986).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (2)

A. Mizrahi, M. Horowitz, and L. Schächter, Phys. Rev. A 78, 023802 (2008).
[CrossRef]

A. Mizrahi, K. Ikeda, F. Bonomelli, V. Lomakin, and Y. Fainman, Phys. Rev. A 80, 041804 (2009).
[CrossRef]

Phys. Rev. Lett. (4)

S. Banna, V. Berezovsky, and L. Schächter, Phys. Rev. Lett. 97, 134801 (2006).
[CrossRef] [PubMed]

J. W. R. Tabosa, G. Chen, Z. Hu, R. B. Lee, and H. J. Kimble, Phys. Rev. Lett. 66, 3245 (1991).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, Phys. Rev. Lett. 38, 1351(1977).
[CrossRef]

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Science (1)

T. J. Kippenberg and K. J. Vahala, Science 321, 1172 (2008).
[CrossRef] [PubMed]

Other (2)

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

J. A. Stratton, Electromagnetic Theory (Mcgraw-Hill, 1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Normalized radiation pressure on a gain medium slab with ε g = 3.54 2 as a function of the normalized slab width. (a) First resonance for three values of ε g . (b) Several resonant peaks showing increase of negative radiation pressure with the gain medium slab width. The inset illustrates the configuration.

Fig. 2
Fig. 2

Normalized radiation force on a Mie sphere with ε g = 1.45 2 as a function of the size parameter. (a) ε m = 1.33 2 and ε g = 0 . (b) ε m = 1.33 2 and ε g = 2.1 × 10 3 . The inset illustrates the configuration. (c) ε m = 1.45 2 and ε g = 2.1 × 10 3 .

Fig. 3
Fig. 3

Normalized radiation force on a sphere with radius a = 0.01 λ 0 and ε g = 1.45 2 as a function of the gain. The inset illustrates the configuration.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

F / F 0 = 1 + R T ,
α 0 = 4 π ε 0 ε m a 3 ( ε r 1 ) / ( ε r + 2 ) ,
α = α 0 / ( 1 + j 2 3 k 3 α 0 4 π ε 0 ε m ) ,
F = 1 2 k E 0 2 Im ( α ) .
ξ ε r 2 3 ε r + ξ ( ε r 1 ) 2 = 0 ,
ε r , th = ( 3 9 4 ξ 2 ( ε r 1 ) 2 ) / ( 2 ξ ) ,
F 2 π ε 0 ε m k a 3 E 0 2 [ 3 ε r ( ε r + 2 ) 2 2 3 ( k a ) 3 ( ε r 1 ε r + 2 ) 2 ] .
ε r , th 2 9 ( k a ) 3 ( ε r 1 ) 2 .
ε r , th = ( 1 1 4 ξ 2 ( ε r 1 ) 2 ) / ( 2 ξ ) ,

Metrics