Abstract

The linear and thermal nonlinear spectral responses of silica and hybrid silica/polymer microdisk resonators are investigated. Both types of resonators can be fabricated using the same technological procedure with only slight modification. An extra polymer layer results in opposite sign of the nonlinear thermal optical response of the hybrid microdisks compared to the pure silica ones, which can be explained by the different thermorefractive coefficients of silica and polymer. A full compensation of eigen frequency shift, caused by thermal nonlinearity, has been demonstrated experimentally.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, Nature 424, 839 (2003).
    [CrossRef] [PubMed]
  2. D. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
    [CrossRef] [PubMed]
  3. V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
    [CrossRef] [PubMed]
  4. T. J. Kippenberg, S. M. Spillane, D. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 797 (2003).
    [CrossRef]
  5. M. Borselli, T. Johnson, and O. Painter, Opt. Express 13, 1515 (2005).
    [CrossRef] [PubMed]
  6. V. Almeida and M. Lipson, Opt. Lett. 29, 2387 (2004).
    [CrossRef] [PubMed]
  7. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, Opt. Express 15, 17305 (2007).
    [CrossRef] [PubMed]
  8. L. He, Y. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
    [CrossRef]
  9. C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, Phys. Rev. A 80, 043841(2009).
    [CrossRef]
  10. A. A. Ayon, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, J. Electrochem. Soc. 146, 339 (1999).
    [CrossRef]
  11. M. Oxborrow, IEEE Trans. Microwave Theory Tech. 55, 1209 (2007).
    [CrossRef]
  12. J. Knight, G. Cheung, F. Jacques, and T. Birks, Opt. Lett. 22, 1129 (1997).
    [CrossRef] [PubMed]
  13. C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O. Egorov, F. Lederer, and L. I. Deych, Opt. Express 16, 6285 (2008).
    [CrossRef] [PubMed]
  14. T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742 (2004).
    [CrossRef] [PubMed]

2009 (1)

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, Phys. Rev. A 80, 043841(2009).
[CrossRef]

2008 (2)

2007 (2)

2005 (1)

2004 (3)

2003 (3)

T. J. Kippenberg, S. M. Spillane, D. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 797 (2003).
[CrossRef]

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef] [PubMed]

D. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

1999 (1)

A. A. Ayon, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, J. Electrochem. Soc. 146, 339 (1999).
[CrossRef]

1997 (1)

Adibi, A.

Almeida, V.

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef] [PubMed]

V. Almeida and M. Lipson, Opt. Lett. 29, 2387 (2004).
[CrossRef] [PubMed]

Armani, D.

T. J. Kippenberg, S. M. Spillane, D. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 797 (2003).
[CrossRef]

D. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Ayon, A. A.

A. A. Ayon, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, J. Electrochem. Soc. 146, 339 (1999).
[CrossRef]

Barrios, C.

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef] [PubMed]

Birks, T.

Borselli, M.

Braff, R.

A. A. Ayon, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, J. Electrochem. Soc. 146, 339 (1999).
[CrossRef]

Carmon, T.

Cheung, G.

Chipouline, A.

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, Phys. Rev. A 80, 043841(2009).
[CrossRef]

C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O. Egorov, F. Lederer, and L. I. Deych, Opt. Express 16, 6285 (2008).
[CrossRef] [PubMed]

Deych, L. I.

Dong, C.

L. He, Y. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Egorov, O.

Gaddam, V.

L. He, Y. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

He, L.

L. He, Y. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Jacques, F.

Johnson, T.

Käsebier, T.

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, Phys. Rev. A 80, 043841(2009).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, D. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 797 (2003).
[CrossRef]

D. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Kley, E.-B.

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, Phys. Rev. A 80, 043841(2009).
[CrossRef]

Knight, J.

Lederer, F.

Li, Q.

Lin, C. C.

A. A. Ayon, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, J. Electrochem. Soc. 146, 339 (1999).
[CrossRef]

Lipson, M.

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef] [PubMed]

V. Almeida and M. Lipson, Opt. Lett. 29, 2387 (2004).
[CrossRef] [PubMed]

Oxborrow, M.

M. Oxborrow, IEEE Trans. Microwave Theory Tech. 55, 1209 (2007).
[CrossRef]

Painter, O.

Panepucci, R.

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef] [PubMed]

Pertsch, T.

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, Phys. Rev. A 80, 043841(2009).
[CrossRef]

C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O. Egorov, F. Lederer, and L. I. Deych, Opt. Express 16, 6285 (2008).
[CrossRef] [PubMed]

Sawin, H. H.

A. A. Ayon, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, J. Electrochem. Soc. 146, 339 (1999).
[CrossRef]

Schmidt, C.

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, Phys. Rev. A 80, 043841(2009).
[CrossRef]

C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O. Egorov, F. Lederer, and L. I. Deych, Opt. Express 16, 6285 (2008).
[CrossRef] [PubMed]

Schmidt, M. A.

A. A. Ayon, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, J. Electrochem. Soc. 146, 339 (1999).
[CrossRef]

Soltani, M.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, D. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 797 (2003).
[CrossRef]

D. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Tünnermann, A.

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, Phys. Rev. A 80, 043841(2009).
[CrossRef]

C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O. Egorov, F. Lederer, and L. I. Deych, Opt. Express 16, 6285 (2008).
[CrossRef] [PubMed]

Vahala, K. J.

T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742 (2004).
[CrossRef] [PubMed]

D. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, D. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 797 (2003).
[CrossRef]

Xiao, Y.

L. He, Y. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Yang, L.

L. He, Y. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742 (2004).
[CrossRef] [PubMed]

Yegnanarayanan, S.

Zhu, J.

L. He, Y. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

T. J. Kippenberg, S. M. Spillane, D. Armani, and K. J. Vahala, Appl. Phys. Lett. 83, 797 (2003).
[CrossRef]

L. He, Y. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, Appl. Phys. Lett. 93, 201102 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. Oxborrow, IEEE Trans. Microwave Theory Tech. 55, 1209 (2007).
[CrossRef]

J. Electrochem. Soc. (1)

A. A. Ayon, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, J. Electrochem. Soc. 146, 339 (1999).
[CrossRef]

Nature (3)

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef] [PubMed]

D. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, Nature 431, 1081 (2004).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (1)

C. Schmidt, A. Chipouline, T. Käsebier, E.-B. Kley, A. Tünnermann, and T. Pertsch, Phys. Rev. A 80, 043841(2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Linear characterization of the (a) pure silica and (b) hybrid silica/polymer microdisks including transmission spectra (left, with fitted azimuthal mode numbers) and SEM image of the disks (right; inset shows FEM simulation of mode profile of a fundamental WGM).

Fig. 2
Fig. 2

Comparison of the resonance shape depending on pump power and sweeping direction of the exciting tunable laser source. The low power measurements show symmetric resonance shapes, whereas the high power transmission curves show typical bistable behavior but in opposite directions for (a) silica and (b) hybrid silica/polymer disks.

Fig. 3
Fig. 3

Detailed analysis of the sweeping speed dependence of the resonances of the hybrid silica/polymer disks at different power levels. The inset in (a) shows the FWHM bandwidth for different sweeping speeds. The measurements in (b) indicate that a slow thermal nonlinear effect is responsible for the deformation of the resonance curves.

Fig. 4
Fig. 4

Fundamental WGM resonance wavelength shift as a function of pump power for different polymer layer thickness.

Metrics