Abstract

The Purcell effect is commonly used to increase light emission by enhancing the radiative decay of electric dipole transitions. In this Letter, we demonstrate that the opposite effect, namely, the inhibition of electric dipole transitions, can be used to strongly enhance light emission via magnetic dipole transitions. Specifically, by exploiting the differing symmetries of competitive electric and magnetic dipole transitions in trivalent europium, we demonstrate a fourfold enhancement of the far-field emission from the D05F17 magnetic dipole transition in trivalent europium. We show that this strong enhancement is well predicted by a three-level model that couples the individual Purcell enhancement factors of competitive transitions from the same excited state.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, Phys. Rev. 69, 681 (1946).
    [CrossRef]
  2. K. J. Vahala, Nature 424, 839 (2003).
    [CrossRef] [PubMed]
  3. V. M. Shalaev, Nat. Photon. 1, 41 (2007).
    [CrossRef]
  4. Q. Thommen and P. Mandel, Opt. Lett. 31, 1803 (2006).
    [CrossRef] [PubMed]
  5. N. Noginova, G. Zhu, M. Mavy, and M. A. Noginov, J. Appl. Phys. 103, 07E901 (2008).
    [CrossRef]
  6. N. Noginova, Y. Barnakov, H. Li, and M. Noginov, Opt. Express 17, 10767 (2009).
    [CrossRef] [PubMed]
  7. E. Snoeks, A. Lagendijk, and A. Polman, Phys. Rev. Lett. 74, 2459 (1995).
    [CrossRef] [PubMed]
  8. Y. Gong, S. Yerci, R. Li, L. Dal Negro, and J. Vuckovic, Opt. Express 17, 20642 (2009).
    [CrossRef] [PubMed]
  9. S. Freed and S. I. Weissman, Phys. Rev. 60, 440 (1941).
    [CrossRef]
  10. K. H. Drexhage, Prog. Opt. 12, 162 (1974).
  11. R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
    [CrossRef]
  12. R. E. Kunz and W. Lukosz, Phys. Rev. B 21, 4814 (1980).
    [CrossRef]
  13. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998).
    [CrossRef]

2009

2008

N. Noginova, G. Zhu, M. Mavy, and M. A. Noginov, J. Appl. Phys. 103, 07E901 (2008).
[CrossRef]

2007

V. M. Shalaev, Nat. Photon. 1, 41 (2007).
[CrossRef]

2006

2003

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef] [PubMed]

1998

1995

E. Snoeks, A. Lagendijk, and A. Polman, Phys. Rev. Lett. 74, 2459 (1995).
[CrossRef] [PubMed]

1980

R. E. Kunz and W. Lukosz, Phys. Rev. B 21, 4814 (1980).
[CrossRef]

1978

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

1974

K. H. Drexhage, Prog. Opt. 12, 162 (1974).

1946

E. M. Purcell, Phys. Rev. 69, 681 (1946).
[CrossRef]

1941

S. Freed and S. I. Weissman, Phys. Rev. 60, 440 (1941).
[CrossRef]

Barnakov, Y.

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

Djurišic, A. B.

Drexhage, K. H.

K. H. Drexhage, Prog. Opt. 12, 162 (1974).

Elazar, J. M.

Freed, S.

S. Freed and S. I. Weissman, Phys. Rev. 60, 440 (1941).
[CrossRef]

Gong, Y.

Kunz, R. E.

R. E. Kunz and W. Lukosz, Phys. Rev. B 21, 4814 (1980).
[CrossRef]

Lagendijk, A.

E. Snoeks, A. Lagendijk, and A. Polman, Phys. Rev. Lett. 74, 2459 (1995).
[CrossRef] [PubMed]

Li, H.

Li, R.

Lukosz, W.

R. E. Kunz and W. Lukosz, Phys. Rev. B 21, 4814 (1980).
[CrossRef]

Majewski, M. L.

Mandel, P.

Mavy, M.

N. Noginova, G. Zhu, M. Mavy, and M. A. Noginov, J. Appl. Phys. 103, 07E901 (2008).
[CrossRef]

Negro, L. Dal

Noginov, M.

Noginov, M. A.

N. Noginova, G. Zhu, M. Mavy, and M. A. Noginov, J. Appl. Phys. 103, 07E901 (2008).
[CrossRef]

Noginova, N.

N. Noginova, Y. Barnakov, H. Li, and M. Noginov, Opt. Express 17, 10767 (2009).
[CrossRef] [PubMed]

N. Noginova, G. Zhu, M. Mavy, and M. A. Noginov, J. Appl. Phys. 103, 07E901 (2008).
[CrossRef]

Polman, A.

E. Snoeks, A. Lagendijk, and A. Polman, Phys. Rev. Lett. 74, 2459 (1995).
[CrossRef] [PubMed]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

Purcell, E. M.

E. M. Purcell, Phys. Rev. 69, 681 (1946).
[CrossRef]

Rakic, A. D.

Shalaev, V. M.

V. M. Shalaev, Nat. Photon. 1, 41 (2007).
[CrossRef]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

Snoeks, E.

E. Snoeks, A. Lagendijk, and A. Polman, Phys. Rev. Lett. 74, 2459 (1995).
[CrossRef] [PubMed]

Thommen, Q.

Vahala, K. J.

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef] [PubMed]

Vuckovic, J.

Weissman, S. I.

S. Freed and S. I. Weissman, Phys. Rev. 60, 440 (1941).
[CrossRef]

Yerci, S.

Zhu, G.

N. Noginova, G. Zhu, M. Mavy, and M. A. Noginov, J. Appl. Phys. 103, 07E901 (2008).
[CrossRef]

Adv. Chem. Phys.

R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
[CrossRef]

Appl. Opt.

J. Appl. Phys.

N. Noginova, G. Zhu, M. Mavy, and M. A. Noginov, J. Appl. Phys. 103, 07E901 (2008).
[CrossRef]

Nat. Photon.

V. M. Shalaev, Nat. Photon. 1, 41 (2007).
[CrossRef]

Nature

K. J. Vahala, Nature 424, 839 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev.

E. M. Purcell, Phys. Rev. 69, 681 (1946).
[CrossRef]

S. Freed and S. I. Weissman, Phys. Rev. 60, 440 (1941).
[CrossRef]

Phys. Rev. B

R. E. Kunz and W. Lukosz, Phys. Rev. B 21, 4814 (1980).
[CrossRef]

Phys. Rev. Lett.

E. Snoeks, A. Lagendijk, and A. Polman, Phys. Rev. Lett. 74, 2459 (1995).
[CrossRef] [PubMed]

Prog. Opt.

K. H. Drexhage, Prog. Opt. 12, 162 (1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Normalized total radiative decay rates of two-level magnetic (solid curve, λ = 590 nm ) and electric (dashed curve, λ = 610 nm ) dipole emitters as a function of distance from a planar gold surface. ε SiO 2 = 2.146 and ε Au from [13]. Inset, schematic of calculation geometry. (b) Illustrative example showing differing self-interference for tangentially oriented ED and MD emitters located a half-wavelength from a metal surface.

Fig. 2
Fig. 2

(a) Representative emission spectra of Eu ( DBM ) 3 phen thin films showing strong modification of emission for different spacer layer thicknesses, d, above gold film. Left inset, schematic of fabricated structure. Right inset, magnified spectra of MD emission. (b) MD enhancement factor as a function of spacer layer thickness.

Fig. 3
Fig. 3

(a) Comparison of experimental (dots) and calculated (dashed curve) MD branching ratios as a function of spacer layer thickness. Inset, three-level model used for theoretical analysis. (b) Normalized far-field decay rates for isotropic two-level ED (dashed curve, λ = 610 nm ) and MD (solid curve, λ = 590 nm ) emitters. Rates are normalized to the reference case of emitter on pure glass substrate.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ ED ( d ) = Γ 0 ED ( 3 2 Im [ 0 ( 1 r 12 p exp ( 2 l k d ) ) ( 1 + r 13 p ) 1 r 12 p r 13 p exp ( 2 l k d ) u 3 d u l ] ) , Γ | | ED ( d ) = Γ 0 ED ( 3 4 Im [ 0 ( ( 1 u 2 ) ( 1 + r 12 p exp ( 2 l k d ) ) ( 1 + r 13 p ) 1 r 12 p r 13 p exp ( 2 l k d ) + ( 1 + r 12 s exp ( 2 l k d ) ) ( 1 + r 13 s ) 1 r 12 s r 13 s exp ( 2 l k d ) ) u d u l ] ) ,

Metrics