Abstract

In this Letter, we propose the use of optical pulse coding techniques for long-range distributed sensors based on Brillouin optical time-domain analysis (BOTDA). Compared to conventional BOTDA sensors, optical coding provides a significant sensing-range enhancement, allowing for temperature and strain measurements with 1 m spatial resolution over 50 km of standard single-mode fiber, with an accuracy of 2.2°C/44με, respectively.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, Meas. Sci. Technol. 16, 900 (2005).
    [CrossRef]
  2. S. Diaz, S. F. Mafang, M. Lopez-Amo, and L. Thévenaz, IEEE Sens. J. 8, 1268 (2008).
    [CrossRef]
  3. X. Bao, J. Dhliwayo, N. Heron, D. G. Webb, and D. A. Jackson, J. Lightwave Technol. 13, 1340 (1995).
    [CrossRef]
  4. D. Alasia, M. González Herráez, L. Abrardi, S. Martin-López, and L. Thévenaz, Proc. SPIE 5855, 587 (2005).
    [CrossRef]
  5. M. A. Soto, G. Bolognini, and F. Di Pasquale, IEEE Photon. Technol. Lett. 21, 450 (2009).
    [CrossRef]
  6. A. Minardo, R. Bernini, and L. Zeni, IEEE Sens. J. 9, 633 (2009).
    [CrossRef]

2009 (2)

M. A. Soto, G. Bolognini, and F. Di Pasquale, IEEE Photon. Technol. Lett. 21, 450 (2009).
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, IEEE Sens. J. 9, 633 (2009).
[CrossRef]

2008 (1)

S. Diaz, S. F. Mafang, M. Lopez-Amo, and L. Thévenaz, IEEE Sens. J. 8, 1268 (2008).
[CrossRef]

2005 (2)

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, Meas. Sci. Technol. 16, 900 (2005).
[CrossRef]

D. Alasia, M. González Herráez, L. Abrardi, S. Martin-López, and L. Thévenaz, Proc. SPIE 5855, 587 (2005).
[CrossRef]

1995 (1)

X. Bao, J. Dhliwayo, N. Heron, D. G. Webb, and D. A. Jackson, J. Lightwave Technol. 13, 1340 (1995).
[CrossRef]

Abrardi, L.

D. Alasia, M. González Herráez, L. Abrardi, S. Martin-López, and L. Thévenaz, Proc. SPIE 5855, 587 (2005).
[CrossRef]

Alasia, D.

D. Alasia, M. González Herráez, L. Abrardi, S. Martin-López, and L. Thévenaz, Proc. SPIE 5855, 587 (2005).
[CrossRef]

Bao, X.

X. Bao, J. Dhliwayo, N. Heron, D. G. Webb, and D. A. Jackson, J. Lightwave Technol. 13, 1340 (1995).
[CrossRef]

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, IEEE Sens. J. 9, 633 (2009).
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, Meas. Sci. Technol. 16, 900 (2005).
[CrossRef]

Bolognini, G.

M. A. Soto, G. Bolognini, and F. Di Pasquale, IEEE Photon. Technol. Lett. 21, 450 (2009).
[CrossRef]

Briffod, F.

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, Meas. Sci. Technol. 16, 900 (2005).
[CrossRef]

Dhliwayo, J.

X. Bao, J. Dhliwayo, N. Heron, D. G. Webb, and D. A. Jackson, J. Lightwave Technol. 13, 1340 (1995).
[CrossRef]

Di Pasquale, F.

M. A. Soto, G. Bolognini, and F. Di Pasquale, IEEE Photon. Technol. Lett. 21, 450 (2009).
[CrossRef]

Diaz, S.

S. Diaz, S. F. Mafang, M. Lopez-Amo, and L. Thévenaz, IEEE Sens. J. 8, 1268 (2008).
[CrossRef]

González Herráez, M.

D. Alasia, M. González Herráez, L. Abrardi, S. Martin-López, and L. Thévenaz, Proc. SPIE 5855, 587 (2005).
[CrossRef]

Heron, N.

X. Bao, J. Dhliwayo, N. Heron, D. G. Webb, and D. A. Jackson, J. Lightwave Technol. 13, 1340 (1995).
[CrossRef]

Jackson, D. A.

X. Bao, J. Dhliwayo, N. Heron, D. G. Webb, and D. A. Jackson, J. Lightwave Technol. 13, 1340 (1995).
[CrossRef]

Lopez-Amo, M.

S. Diaz, S. F. Mafang, M. Lopez-Amo, and L. Thévenaz, IEEE Sens. J. 8, 1268 (2008).
[CrossRef]

Mafang, S. F.

S. Diaz, S. F. Mafang, M. Lopez-Amo, and L. Thévenaz, IEEE Sens. J. 8, 1268 (2008).
[CrossRef]

Martin-López, S.

D. Alasia, M. González Herráez, L. Abrardi, S. Martin-López, and L. Thévenaz, Proc. SPIE 5855, 587 (2005).
[CrossRef]

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, IEEE Sens. J. 9, 633 (2009).
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, Meas. Sci. Technol. 16, 900 (2005).
[CrossRef]

Soto, M. A.

M. A. Soto, G. Bolognini, and F. Di Pasquale, IEEE Photon. Technol. Lett. 21, 450 (2009).
[CrossRef]

Thévenaz, L.

S. Diaz, S. F. Mafang, M. Lopez-Amo, and L. Thévenaz, IEEE Sens. J. 8, 1268 (2008).
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, Meas. Sci. Technol. 16, 900 (2005).
[CrossRef]

D. Alasia, M. González Herráez, L. Abrardi, S. Martin-López, and L. Thévenaz, Proc. SPIE 5855, 587 (2005).
[CrossRef]

Webb, D. G.

X. Bao, J. Dhliwayo, N. Heron, D. G. Webb, and D. A. Jackson, J. Lightwave Technol. 13, 1340 (1995).
[CrossRef]

Zeni, L.

A. Minardo, R. Bernini, and L. Zeni, IEEE Sens. J. 9, 633 (2009).
[CrossRef]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, Meas. Sci. Technol. 16, 900 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. A. Soto, G. Bolognini, and F. Di Pasquale, IEEE Photon. Technol. Lett. 21, 450 (2009).
[CrossRef]

IEEE Sens. J. (2)

A. Minardo, R. Bernini, and L. Zeni, IEEE Sens. J. 9, 633 (2009).
[CrossRef]

S. Diaz, S. F. Mafang, M. Lopez-Amo, and L. Thévenaz, IEEE Sens. J. 8, 1268 (2008).
[CrossRef]

J. Lightwave Technol. (1)

X. Bao, J. Dhliwayo, N. Heron, D. G. Webb, and D. A. Jackson, J. Lightwave Technol. 13, 1340 (1995).
[CrossRef]

Meas. Sci. Technol. (1)

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, Meas. Sci. Technol. 16, 900 (2005).
[CrossRef]

Proc. SPIE (1)

D. Alasia, M. González Herráez, L. Abrardi, S. Martin-López, and L. Thévenaz, Proc. SPIE 5855, 587 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for the coded-BOTDA sensor. DFB, distributed-feedback laser; MZM, Mach–Zehnder modulator; EDFA, erbium-doped fiber amplifier; VOA, variable optical attenuator; FBG, fiber Bragg grating.

Fig. 2
Fig. 2

BOTDA traces at 10.986 GHz for both Simplex coding (black line) and single-pulse (gray line) cases.

Fig. 3
Fig. 3

Brillouin gain spectrum and Brillouin frequency shift (inset) as a function of distance when using Simplex coding.

Fig. 4
Fig. 4

Brillouin gain spectrum at 45 km distance when using both (a) Simplex-coded and (b) single-pulse BOTDA sensors.

Fig. 5
Fig. 5

Experimental demonstration of 1 m spatial resolution over 50 km distance. (a) BGS and (b) BFS as a function of distance for the final meters (the initial part is omitted for clarity).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ I C W ( t , Δ ν ) = I C W L   exp ( α L ) { exp [ v g t / 2 v g t / 2 + Δ z g B ( ξ , Δ ν ) I p ( ξ , Δ ν ) d ξ ] 1 } ,
Δ I C W ( t , Δ ν ) v g t / 2 v g t / 2 + Δ z g B ( ξ , Δ ν ) I p ( ξ , Δ ν ) d ξ ,

Metrics