Abstract

To reduce energy losses by thermalization of charge carriers in a silicon solar cell, quantum-cutting luminescent materials are desired for the efficient downconversion of UV–visible radiation into near-IR radiation. In this Letter, quantum cutting involving emission of two near-IR photons for each UV-blue photon absorbed is demonstrated in Nd3+Yb3+:β-YF3 nanocrystals embedded in transparent bulk-glass ceramics. Upon excitation of an Nd3+ ion with a UV-blue photon, Yb3+ ions emit two near-IR photons through an efficient two-step energy transfer from Nd3+ to Yb3+ with Nd3+:F324 acting as the intermediate state.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. S. Richards, Energy Mater. Sol. Cells. 90, 1189 (2006).
    [CrossRef]
  2. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
    [CrossRef]
  3. N. Bloembergen, Phys. Rev. Lett. 2, 84 (1959).
    [CrossRef]
  4. C. Ronda, J. Alloys Compd. 225, 543 (1995).
    [CrossRef]
  5. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science 283, 663 (1999).
    [CrossRef] [PubMed]
  6. T. Trupke, M. A. Green, and P. Würfel, J. Appl. Phys. 92, 1668 (2002).
    [CrossRef]
  7. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
    [CrossRef]
  8. Q. Y. Zhang, C. H. Yang, and Y. X. Pan, Appl. Phys. Lett. 90, 021107 (2007).
    [CrossRef]
  9. Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, Appl. Phys. Lett. 90, 061914 (2007).
    [CrossRef]
  10. S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, Appl. Phys. Lett. 92, 141112 (2008).
    [CrossRef]
  11. L. Xie, Y. Wang, and H. Zhang, Appl. Phys. Lett. 94, 061905 (2009).
    [CrossRef]
  12. D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Weng, J. Phys. Chem. C 113, 6406 (2009).
    [CrossRef]
  13. B. M. van der Ende, L. Aarts, and A. Meijerink, Adv. Mater. (Weinheim, Ger.) 21, 1 (2009).
    [CrossRef]
  14. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, Appl. Phys. Lett. 91, 051903 (2007).
    [CrossRef]
  15. D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, Opt. Lett. 33, 1884 (2008).
    [CrossRef] [PubMed]
  16. X. Liu, Y. Qiao, G. Dong, S. Ye, B. Zhu, G. Lakshminarayana, D. Chen, and J. Qiu, Opt. Lett. 33, 2858 (2008).
    [CrossRef] [PubMed]
  17. D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, Appl. Phys. Lett. 91, 051920 (2007).
    [CrossRef]

2009 (3)

L. Xie, Y. Wang, and H. Zhang, Appl. Phys. Lett. 94, 061905 (2009).
[CrossRef]

D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Weng, J. Phys. Chem. C 113, 6406 (2009).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, Adv. Mater. (Weinheim, Ger.) 21, 1 (2009).
[CrossRef]

2008 (3)

2007 (4)

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, Appl. Phys. Lett. 91, 051903 (2007).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

Q. Y. Zhang, C. H. Yang, and Y. X. Pan, Appl. Phys. Lett. 90, 021107 (2007).
[CrossRef]

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, Appl. Phys. Lett. 90, 061914 (2007).
[CrossRef]

2006 (1)

B. S. Richards, Energy Mater. Sol. Cells. 90, 1189 (2006).
[CrossRef]

2005 (1)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
[CrossRef]

2002 (1)

T. Trupke, M. A. Green, and P. Würfel, J. Appl. Phys. 92, 1668 (2002).
[CrossRef]

1999 (1)

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science 283, 663 (1999).
[CrossRef] [PubMed]

1995 (1)

C. Ronda, J. Alloys Compd. 225, 543 (1995).
[CrossRef]

1961 (1)

W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
[CrossRef]

1959 (1)

N. Bloembergen, Phys. Rev. Lett. 2, 84 (1959).
[CrossRef]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, Adv. Mater. (Weinheim, Ger.) 21, 1 (2009).
[CrossRef]

Bloembergen, N.

N. Bloembergen, Phys. Rev. Lett. 2, 84 (1959).
[CrossRef]

Chen, D.

Chen, D. Q.

D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Weng, J. Phys. Chem. C 113, 6406 (2009).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, Opt. Lett. 33, 1884 (2008).
[CrossRef] [PubMed]

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

Chen, J. X.

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, Appl. Phys. Lett. 92, 141112 (2008).
[CrossRef]

den Hertog, M. I.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
[CrossRef]

Dong, G.

Donker, H.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science 283, 663 (1999).
[CrossRef] [PubMed]

Green, M. A.

T. Trupke, M. A. Green, and P. Würfel, J. Appl. Phys. 92, 1668 (2002).
[CrossRef]

Huang, P.

D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Weng, J. Phys. Chem. C 113, 6406 (2009).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, Opt. Lett. 33, 1884 (2008).
[CrossRef] [PubMed]

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

Ji, X. H.

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, Appl. Phys. Lett. 90, 061914 (2007).
[CrossRef]

Jiang, Z. H.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, Appl. Phys. Lett. 91, 051903 (2007).
[CrossRef]

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, Appl. Phys. Lett. 90, 061914 (2007).
[CrossRef]

Kox, M. H. F.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
[CrossRef]

Lakshminarayana, G.

Liu, X.

Luo, J.

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, Appl. Phys. Lett. 92, 141112 (2008).
[CrossRef]

Meijerink, A.

B. M. van der Ende, L. Aarts, and A. Meijerink, Adv. Mater. (Weinheim, Ger.) 21, 1 (2009).
[CrossRef]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
[CrossRef]

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science 283, 663 (1999).
[CrossRef] [PubMed]

Oskam, K. D.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science 283, 663 (1999).
[CrossRef] [PubMed]

Pan, Y. X.

Q. Y. Zhang, C. H. Yang, and Y. X. Pan, Appl. Phys. Lett. 90, 021107 (2007).
[CrossRef]

Qiao, Y.

Qiu, J.

Qiu, J. R.

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, Appl. Phys. Lett. 92, 141112 (2008).
[CrossRef]

Queisser, H. J.

W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
[CrossRef]

Richards, B. S.

B. S. Richards, Energy Mater. Sol. Cells. 90, 1189 (2006).
[CrossRef]

Ronda, C.

C. Ronda, J. Alloys Compd. 225, 543 (1995).
[CrossRef]

Shockley, W.

W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
[CrossRef]

Trupke, T.

T. Trupke, M. A. Green, and P. Würfel, J. Appl. Phys. 92, 1668 (2002).
[CrossRef]

van der Eerden, J. P. J. M.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
[CrossRef]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, Adv. Mater. (Weinheim, Ger.) 21, 1 (2009).
[CrossRef]

Vergeer, P.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
[CrossRef]

Vlugt, T. J. H.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
[CrossRef]

Wang, Y.

L. Xie, Y. Wang, and H. Zhang, Appl. Phys. Lett. 94, 061905 (2009).
[CrossRef]

Wang, Y. S.

D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Weng, J. Phys. Chem. C 113, 6406 (2009).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, Opt. Lett. 33, 1884 (2008).
[CrossRef] [PubMed]

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

Wegh, R. T.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science 283, 663 (1999).
[CrossRef] [PubMed]

Weng, F. Y.

D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Weng, J. Phys. Chem. C 113, 6406 (2009).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, Opt. Lett. 33, 1884 (2008).
[CrossRef] [PubMed]

Würfel, P.

T. Trupke, M. A. Green, and P. Würfel, J. Appl. Phys. 92, 1668 (2002).
[CrossRef]

Xie, L.

L. Xie, Y. Wang, and H. Zhang, Appl. Phys. Lett. 94, 061905 (2009).
[CrossRef]

Yang, C. H.

Q. Y. Zhang, C. H. Yang, and Y. X. Pan, Appl. Phys. Lett. 90, 021107 (2007).
[CrossRef]

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, Appl. Phys. Lett. 90, 061914 (2007).
[CrossRef]

Yang, G. F.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, Appl. Phys. Lett. 91, 051903 (2007).
[CrossRef]

Ye, S.

Yu, Y. L.

D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Weng, J. Phys. Chem. C 113, 6406 (2009).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, Opt. Lett. 33, 1884 (2008).
[CrossRef] [PubMed]

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

Zhang, H.

L. Xie, Y. Wang, and H. Zhang, Appl. Phys. Lett. 94, 061905 (2009).
[CrossRef]

Zhang, Q. Y.

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, Appl. Phys. Lett. 90, 061914 (2007).
[CrossRef]

Q. Y. Zhang, C. H. Yang, and Y. X. Pan, Appl. Phys. Lett. 90, 021107 (2007).
[CrossRef]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, Appl. Phys. Lett. 91, 051903 (2007).
[CrossRef]

Zhu, B.

Adv. Mater. (Weinheim, Ger.) (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, Adv. Mater. (Weinheim, Ger.) 21, 1 (2009).
[CrossRef]

Appl. Phys. Lett. (6)

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, Appl. Phys. Lett. 91, 051903 (2007).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu, and P. Huang, Appl. Phys. Lett. 91, 051920 (2007).
[CrossRef]

Q. Y. Zhang, C. H. Yang, and Y. X. Pan, Appl. Phys. Lett. 90, 021107 (2007).
[CrossRef]

Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, Appl. Phys. Lett. 90, 061914 (2007).
[CrossRef]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, Appl. Phys. Lett. 92, 141112 (2008).
[CrossRef]

L. Xie, Y. Wang, and H. Zhang, Appl. Phys. Lett. 94, 061905 (2009).
[CrossRef]

Energy Mater. Sol. Cells. (1)

B. S. Richards, Energy Mater. Sol. Cells. 90, 1189 (2006).
[CrossRef]

J. Alloys Compd. (1)

C. Ronda, J. Alloys Compd. 225, 543 (1995).
[CrossRef]

J. Appl. Phys. (2)

W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
[CrossRef]

T. Trupke, M. A. Green, and P. Würfel, J. Appl. Phys. 92, 1668 (2002).
[CrossRef]

J. Phys. Chem. C (1)

D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Weng, J. Phys. Chem. C 113, 6406 (2009).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (1)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

N. Bloembergen, Phys. Rev. Lett. 2, 84 (1959).
[CrossRef]

Science (1)

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science 283, 663 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Energy levels of Nd 3 + and Yb 3 + and a possible quantum cutting mechanism. One UV-blue photon absorbed by a Nd 3 + ion is converted to two Yb 3 + NIR photons through a two-step sequential energy transfer. Solid, dotted, and curved arrows represent optical transition, nonradiative energy transfer, and nonradiative relaxation, respectively.

Fig. 2
Fig. 2

(a) Absorption and (b) excitation spectra of the 0.1 mol.% Nd 3 + 1.0 mol . % Yb 3 + codoped glass ceramic, demonstrating DC luminescence of Yb 3 + . Each spectrum is normalized to the G 7 2 4 band. Excitation spectrum was recorded by monitoring Yb 3 + emission at 976 nm and corrected for wavelength-dependent instrument response.  

Fig. 3
Fig. 3

Luminescence decay curves of (a) G 9 2 2 , (b) G 7 2 4 , and (c) F 3 2 4 states in the 0.1 mol.% Nd 3 + doped (solid curve) and 0.1 mol.% Nd 3 + 1.0 mol . % Yb 3 + codoped glass ceramics (dotted curve).

Fig. 4
Fig. 4

Emission spectra of 0.1 mol . % Nd 3 + x mol . % Yb 3 + codoped glass ceramics under 355 nm excitation: (a) x = 0, (b) x = 0.5, and (c) x = 1.0. The visible and NIR parts are recorded under the same instrumental conditions.

Metrics