Abstract

We report on what we believe to be the first truly distributed birefringence measurement of polarization-maintaining fibers (PMFs) based on transient Brillouin grating (TBG). A TBG is created by two short pump pulses in the slow axis of the PMF, and then the birefringence-related TBG spectrum is mapped by scanning a probe pulse launched in the fast axis, where the local birefringence can be calculated using the birefringence induced frequency shift. Two types of widely used PMFs, bow-tie and panda, with a length of 8 m were measured at a spatial resolution of 20 cm, and the results show that the birefringence features a periodic variation, and their variation ranges are 2.4×106 and 1.3×106 along the test fibers, respectively.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Olsson, M. Karlsson, and P. A. Andrekson, IEEE Photon. Technol. Lett. 10, 997 (1998).
    [CrossRef]
  2. C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, IEEE Photon. Technol. Lett. 15, 269 (2003).
    [CrossRef]
  3. D. A. Flavin, R. McBride, and J. D. C. Jones, Opt. Lett. 27, 1010 (2002).
    [CrossRef]
  4. P. Hlubina and D. Ciprian, Opt. Express 15, 17019 (2007).
    [CrossRef] [PubMed]
  5. Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
    [CrossRef] [PubMed]
  6. V. P. Kalosha, W. Li, F. Wang, L. Chen, and X. Bao, Opt. Lett. 33, 2848 (2008).
    [CrossRef] [PubMed]
  7. K. Y. Song, W. Zou, Z. He, and K. Hotate, Opt. Lett. 34, 1381 (2009).
    [CrossRef] [PubMed]
  8. Y. Dong, X. Bao, and L. Chen, Opt. Lett. 34, 2590 (2009).
    [CrossRef] [PubMed]

2009

2008

2007

P. Hlubina and D. Ciprian, Opt. Express 15, 17019 (2007).
[CrossRef] [PubMed]

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef] [PubMed]

2003

C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, IEEE Photon. Technol. Lett. 15, 269 (2003).
[CrossRef]

2002

1998

B. E. Olsson, M. Karlsson, and P. A. Andrekson, IEEE Photon. Technol. Lett. 10, 997 (1998).
[CrossRef]

Andrekson, P. A.

B. E. Olsson, M. Karlsson, and P. A. Andrekson, IEEE Photon. Technol. Lett. 10, 997 (1998).
[CrossRef]

Bao, X.

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef] [PubMed]

Chen, L.

Chung, Y.

C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, IEEE Photon. Technol. Lett. 15, 269 (2003).
[CrossRef]

Ciprian, D.

Dong, Y.

Flavin, D. A.

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef] [PubMed]

Han, Y. G.

C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, IEEE Photon. Technol. Lett. 15, 269 (2003).
[CrossRef]

He, Z.

Hlubina, P.

Hotate, K.

Jones, J. D. C.

Kalosha, V. P.

Kang, J. U.

C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, IEEE Photon. Technol. Lett. 15, 269 (2003).
[CrossRef]

Karlsson, M.

B. E. Olsson, M. Karlsson, and P. A. Andrekson, IEEE Photon. Technol. Lett. 10, 997 (1998).
[CrossRef]

Kim, C. S.

C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, IEEE Photon. Technol. Lett. 15, 269 (2003).
[CrossRef]

Li, W.

McBride, R.

Olsson, B. E.

B. E. Olsson, M. Karlsson, and P. A. Andrekson, IEEE Photon. Technol. Lett. 10, 997 (1998).
[CrossRef]

Paek, U. C.

C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, IEEE Photon. Technol. Lett. 15, 269 (2003).
[CrossRef]

Song, K. Y.

Sova, R. M.

C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, IEEE Photon. Technol. Lett. 15, 269 (2003).
[CrossRef]

Wang, F.

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef] [PubMed]

Zou, W.

IEEE Photon. Technol. Lett.

B. E. Olsson, M. Karlsson, and P. A. Andrekson, IEEE Photon. Technol. Lett. 10, 997 (1998).
[CrossRef]

C. S. Kim, Y. G. Han, R. M. Sova, U. C. Paek, Y. Chung, and J. U. Kang, IEEE Photon. Technol. Lett. 15, 269 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Science

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: PC, polarization controller; EOM, electro-optic modulator; PBS, polarization beam splitter; C, circulator; PD, photo-detector; EDFA, erbium-doped fiber amplifier; ESA, electrical spectrum analyzer; FBG, fiber Bragg grating.

Fig. 2
Fig. 2

Typical TBG spectra in bow-tie fiber: (a) two- and (b) three-peak spectra.

Fig. 3
Fig. 3

Measured distributed birefringence of 8 m bow-tie fiber using peaks a and b.

Fig. 4
Fig. 4

Typical TBG spectra in panda fiber: (a) two- and (b) three-peak spectra.

Fig. 5
Fig. 5

Measured distributed birefringence of 8 m panda fiber using peaks a and b.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ω B V = n f ( ω ) ω c + n f ( ω + ω B ) ( ω + ω B ) c = n s ( ω Δ ω ) ( ω Δ ω ) c + n s ( ω + ω B Δ ω ) ( ω + ω B Δ ω ) c .
n f ( ω ) ω c + n f ( ω + ω B ) ( ω + ω B ) c = n s ( ω ) ω c + ( Δ ω ) d ( n s ( ω ) ω ) c d ω + n s ( ω + ω B ) ( ω + ω B ) c + ( Δ ω ) d ( n s ( ω + ω B ) ( ω + ω B ) ) c d ω .
Δ ω ( n s g ( ω ) + n s g ( ω + ω B ) ) = ( n s ( ω ) n f ( ω ) ) ω + ( n s ( ω + ω B ) n f ( ω + ω B ) ) ( ω + ω B ) .
Δ ω = Δ n ( ω ) ω n s g .

Metrics