Abstract

We report what we believe to be the first demonstration of a laser-driven fiber optic gyroscope (FOG) built with an air-core fiber. Its phase noise is measured to be 130μradHz. When the sensing fiber is replaced with a conventional fiber, this figure drops to 12μradHz. Comparison between these values suggests that the air-core fiber gyro is most likely not limited solely by backscattering noise but by reflections at the solid-core/air-core interface. By minimizing additional noise sources and reducing the air-core fiber loss to its theoretical limit (0.1dBkm), we predict that the backscattering noise of the laser-driven air-core FOG will drop below the level of current FOGs. Compared with commercial FOGs, this FOG will exhibit a lower noise, improved thermal and mean-wavelength stability, and reduced magnetic-field sensitivity.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Cutler, S. Newton, and H. Shaw, Opt. Lett. 5, 488 (1980).
    [CrossRef] [PubMed]
  2. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 7, 282 (1982).
    [CrossRef] [PubMed]
  3. B. Culshaw and I. P. Giles, IEEE J. Quantum Electron. 18, 690 (1982).
    [CrossRef]
  4. V. Dangui, M. J. F. Digonnet, and G. S. Kino, Opt. Lett. 34, 875 (2009).
    [CrossRef] [PubMed]
  5. S. Blin, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, J. Lightwave Technol. 25, 861 (2007).
    [CrossRef]
  6. S. Blin, M. J. F. Digonnet, and G. S. Kino, Proc. SPIE 7004, 70044X (2008).
    [CrossRef]
  7. http://www.nktphotonics.com/files/files/HC-1550-02.pdf.
  8. J. Mackintosh and B. Culshaw, J. Lightwave Technol. 7, 1323 (1989).
    [CrossRef]
  9. K. Krakenes and K. Blotekjaer, J. Lightwave Technol. 11, 643 (1993).
    [CrossRef]
  10. http://www.corning.com/opticalfiber/products/smf-28e+_fiber.aspx.
  11. V. Dangui, M. J. F. Digonnet, and G. S. Kino, J. Lightwave Technol. 27, 3783 (2009).
    [CrossRef]
  12. M. Wegmuller, M. Legré, N. Gisin, T. P. Hansen, C. Jakobsen, and J. Broeng, Opt. Express 13, 1457 (2005).
    [CrossRef] [PubMed]
  13. Matthieu Legré, GAP-Optique, University of Geneva, CH-1211 Geneva 4, Switzerland (personal communication, 2007).
  14. M. J. F. Digonnet, S. Blin, H. K. Kim, V. Dangui, and G. S. Kino, Meas. Sci. Technol. 18, 3089 (2007).
    [CrossRef]
  15. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. S. J. Russell, Opt. Express 13, 236 (2005).
    [CrossRef] [PubMed]

2009

2008

S. Blin, M. J. F. Digonnet, and G. S. Kino, Proc. SPIE 7004, 70044X (2008).
[CrossRef]

2007

M. J. F. Digonnet, S. Blin, H. K. Kim, V. Dangui, and G. S. Kino, Meas. Sci. Technol. 18, 3089 (2007).
[CrossRef]

S. Blin, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, J. Lightwave Technol. 25, 861 (2007).
[CrossRef]

2005

1993

K. Krakenes and K. Blotekjaer, J. Lightwave Technol. 11, 643 (1993).
[CrossRef]

1989

J. Mackintosh and B. Culshaw, J. Lightwave Technol. 7, 1323 (1989).
[CrossRef]

1982

B. Culshaw and I. P. Giles, IEEE J. Quantum Electron. 18, 690 (1982).
[CrossRef]

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 7, 282 (1982).
[CrossRef] [PubMed]

1980

Bergh, R. A.

Birks, T. A.

Blin, S.

S. Blin, M. J. F. Digonnet, and G. S. Kino, Proc. SPIE 7004, 70044X (2008).
[CrossRef]

M. J. F. Digonnet, S. Blin, H. K. Kim, V. Dangui, and G. S. Kino, Meas. Sci. Technol. 18, 3089 (2007).
[CrossRef]

S. Blin, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, J. Lightwave Technol. 25, 861 (2007).
[CrossRef]

Blotekjaer, K.

K. Krakenes and K. Blotekjaer, J. Lightwave Technol. 11, 643 (1993).
[CrossRef]

Broeng, J.

Couny, F.

Culshaw, B.

J. Mackintosh and B. Culshaw, J. Lightwave Technol. 7, 1323 (1989).
[CrossRef]

B. Culshaw and I. P. Giles, IEEE J. Quantum Electron. 18, 690 (1982).
[CrossRef]

Cutler, C.

Dangui, V.

Digonnet, M. J. F.

Farr, L.

Giles, I. P.

B. Culshaw and I. P. Giles, IEEE J. Quantum Electron. 18, 690 (1982).
[CrossRef]

Gisin, N.

Hansen, T. P.

Jakobsen, C.

Kim, H. K.

S. Blin, H. K. Kim, M. J. F. Digonnet, and G. S. Kino, J. Lightwave Technol. 25, 861 (2007).
[CrossRef]

M. J. F. Digonnet, S. Blin, H. K. Kim, V. Dangui, and G. S. Kino, Meas. Sci. Technol. 18, 3089 (2007).
[CrossRef]

Kino, G. S.

Knight, J. C.

Krakenes, K.

K. Krakenes and K. Blotekjaer, J. Lightwave Technol. 11, 643 (1993).
[CrossRef]

Lefevre, H. C.

Legré, M.

Legré, Matthieu

Matthieu Legré, GAP-Optique, University of Geneva, CH-1211 Geneva 4, Switzerland (personal communication, 2007).

Mackintosh, J.

J. Mackintosh and B. Culshaw, J. Lightwave Technol. 7, 1323 (1989).
[CrossRef]

Mangan, B. J.

Mason, M. W.

Newton, S.

Roberts, P. J.

Russell, P. S. J.

Sabert, H.

Shaw, H.

Shaw, H. J.

Tomlinson, A.

Wegmuller, M.

Williams, D. P.

IEEE J. Quantum Electron.

B. Culshaw and I. P. Giles, IEEE J. Quantum Electron. 18, 690 (1982).
[CrossRef]

J. Lightwave Technol.

Meas. Sci. Technol.

M. J. F. Digonnet, S. Blin, H. K. Kim, V. Dangui, and G. S. Kino, Meas. Sci. Technol. 18, 3089 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

S. Blin, M. J. F. Digonnet, and G. S. Kino, Proc. SPIE 7004, 70044X (2008).
[CrossRef]

Other

http://www.nktphotonics.com/files/files/HC-1550-02.pdf.

http://www.corning.com/opticalfiber/products/smf-28e+_fiber.aspx.

Matthieu Legré, GAP-Optique, University of Geneva, CH-1211 Geneva 4, Switzerland (personal communication, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental laser-driven fiber optic gyroscope.

Fig. 2
Fig. 2

Typical output of the laser-driven SMF-28 fiber optic gyroscope under constant rotation.

Fig. 3
Fig. 3

Typical output of the laser-driven air-core fiber optic gyroscope under constant rotation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ n 2 α b L ,

Metrics