Abstract

We propose an asymmetric cryptosystem based on a phase-truncated Fourier transform. With phase truncation in Fourier transform, one is able to produce an asymmetric ciphertext as real-valued and stationary white noise by using two random phase keys as public keys, while a legal user can retrieve the plaintext using another two different private phase keys in the decryption process. Owing to the nonlinear operation of phase truncation, high robustness against existing attacks could be achieved. A set of simulation results shows the validity of proposed asymmetric cryptosystem.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Javidi, Phys. Today 50, 27 (1997).
    [CrossRef]
  2. P. Refregier and B. Javidi, Opt. Lett. 20, 767 (1995).
    [CrossRef] [PubMed]
  3. H. T. Chang, W. C. Lu, and C. J. Kuo, Appl. Opt. 41, 4825 (2002).
    [CrossRef] [PubMed]
  4. P. K. Wang, L. A. Watson, and C. Chatwin, Opt. Eng. (Bellingham) 35, 2464 (1996).
    [CrossRef]
  5. Y. Li, K. Kreske, and J. Rosen, Appl. Opt. 39, 5295 (2000).
    [CrossRef]
  6. W. Stallings, Cryptography and Network Security: Principles and Practice, 2nd ed. (Prentice Hall, 1999).
  7. G. H. Lin, H. T. Chang, W. N. Lai, and C. H. Chuang, Opt. Eng. 42, 2331 (2003).
    [CrossRef]
  8. X. Peng, H. Wei, and P. Zhang, Opt. Lett. 31, 3579 (2006).
    [CrossRef] [PubMed]
  9. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, Opt. Lett. 30, 1644 (2005).
    [CrossRef] [PubMed]
  10. X. Peng, P. Zhang, H. Wei, and B. Yu, Opt. Lett. 31, 3261 (2006).
    [CrossRef] [PubMed]
  11. X. Peng, H. Q. Tang, and J. D. Tian, Acta Phys. Sin. 56, 2629 (2007).
  12. G. Situ and J. Zhang, Opt. Lett. 29, 1584 (2004).
    [CrossRef] [PubMed]
  13. G. Unnikrishnan and K. Singh, Opt. Eng. 39, 2853 (2000).
    [CrossRef]
  14. X. Peng, H. Wei, and P. Zhang, Opt. Lett. 31, 1044 (2006).
    [CrossRef] [PubMed]
  15. W. Qin and X. Peng, J. Opt. A 11, 075402 (2009).
    [CrossRef]

2009 (1)

W. Qin and X. Peng, J. Opt. A 11, 075402 (2009).
[CrossRef]

2007 (1)

X. Peng, H. Q. Tang, and J. D. Tian, Acta Phys. Sin. 56, 2629 (2007).

2006 (3)

2005 (1)

2004 (1)

2003 (1)

G. H. Lin, H. T. Chang, W. N. Lai, and C. H. Chuang, Opt. Eng. 42, 2331 (2003).
[CrossRef]

2002 (1)

2000 (2)

Y. Li, K. Kreske, and J. Rosen, Appl. Opt. 39, 5295 (2000).
[CrossRef]

G. Unnikrishnan and K. Singh, Opt. Eng. 39, 2853 (2000).
[CrossRef]

1997 (1)

B. Javidi, Phys. Today 50, 27 (1997).
[CrossRef]

1996 (1)

P. K. Wang, L. A. Watson, and C. Chatwin, Opt. Eng. (Bellingham) 35, 2464 (1996).
[CrossRef]

1995 (1)

Arcos, S.

Carnicer, A.

Chang, H. T.

G. H. Lin, H. T. Chang, W. N. Lai, and C. H. Chuang, Opt. Eng. 42, 2331 (2003).
[CrossRef]

H. T. Chang, W. C. Lu, and C. J. Kuo, Appl. Opt. 41, 4825 (2002).
[CrossRef] [PubMed]

Chatwin, C.

P. K. Wang, L. A. Watson, and C. Chatwin, Opt. Eng. (Bellingham) 35, 2464 (1996).
[CrossRef]

Chuang, C. H.

G. H. Lin, H. T. Chang, W. N. Lai, and C. H. Chuang, Opt. Eng. 42, 2331 (2003).
[CrossRef]

Javidi, B.

Juvells, I.

Kreske, K.

Kuo, C. J.

Lai, W. N.

G. H. Lin, H. T. Chang, W. N. Lai, and C. H. Chuang, Opt. Eng. 42, 2331 (2003).
[CrossRef]

Li, Y.

Lin, G. H.

G. H. Lin, H. T. Chang, W. N. Lai, and C. H. Chuang, Opt. Eng. 42, 2331 (2003).
[CrossRef]

Lu, W. C.

Montes-Usategui, M.

Peng, X.

Qin, W.

W. Qin and X. Peng, J. Opt. A 11, 075402 (2009).
[CrossRef]

Refregier, P.

Rosen, J.

Singh, K.

G. Unnikrishnan and K. Singh, Opt. Eng. 39, 2853 (2000).
[CrossRef]

Situ, G.

Stallings, W.

W. Stallings, Cryptography and Network Security: Principles and Practice, 2nd ed. (Prentice Hall, 1999).

Tang, H. Q.

X. Peng, H. Q. Tang, and J. D. Tian, Acta Phys. Sin. 56, 2629 (2007).

Tian, J. D.

X. Peng, H. Q. Tang, and J. D. Tian, Acta Phys. Sin. 56, 2629 (2007).

Unnikrishnan, G.

G. Unnikrishnan and K. Singh, Opt. Eng. 39, 2853 (2000).
[CrossRef]

Wang, P. K.

P. K. Wang, L. A. Watson, and C. Chatwin, Opt. Eng. (Bellingham) 35, 2464 (1996).
[CrossRef]

Watson, L. A.

P. K. Wang, L. A. Watson, and C. Chatwin, Opt. Eng. (Bellingham) 35, 2464 (1996).
[CrossRef]

Wei, H.

Yu, B.

Zhang, J.

Zhang, P.

Acta Phys. Sin. (1)

X. Peng, H. Q. Tang, and J. D. Tian, Acta Phys. Sin. 56, 2629 (2007).

Appl. Opt. (2)

J. Opt. A (1)

W. Qin and X. Peng, J. Opt. A 11, 075402 (2009).
[CrossRef]

Opt. Eng. (2)

G. Unnikrishnan and K. Singh, Opt. Eng. 39, 2853 (2000).
[CrossRef]

G. H. Lin, H. T. Chang, W. N. Lai, and C. H. Chuang, Opt. Eng. 42, 2331 (2003).
[CrossRef]

Opt. Eng. (Bellingham) (1)

P. K. Wang, L. A. Watson, and C. Chatwin, Opt. Eng. (Bellingham) 35, 2464 (1996).
[CrossRef]

Opt. Lett. (6)

Phys. Today (1)

B. Javidi, Phys. Today 50, 27 (1997).
[CrossRef]

Other (1)

W. Stallings, Cryptography and Network Security: Principles and Practice, 2nd ed. (Prentice Hall, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Flowchart of (a) encryption process and (b) decryption process with PTFT.

Fig. 2
Fig. 2

Sketch of optical setup for PTFT.

Fig. 3
Fig. 3

Input plaintext (Lena, 256 × 256  pixels ). (b) Ciphertext corresponding to (a).

Fig. 4
Fig. 4

Decryption results using (a) no keys, (b) random phase keys, (c) encryption keys, (d) fake decryption keys generated from a fake plaintext, and (e) true decryption keys.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

PT [ F ( u ) ] = | F ( u ) | ,
PR [ F ( u ) ] = exp ( i 2 π φ ( u ) ) .
g 1 ( u ) = PT [ FT ( f ( x ) R 1 ( x ) ) ] ,
g ( x ) = PT [ I FT ( g 1 ( u ) R 2 ( u ) ) ] .
P 2 ( u ) = PR [ FT ( f ( x ) R 1 ( x ) ) ] ,
P 1 ( x ) = PR [ I FT ( g 1 ( u ) R 2 ( u ) ) ] .
g 1 ( u ) = PT [ FT ( g ( x ) P 1 ( x ) ) ] ,
f ( x ) = PT [ I FT ( g 1 ( u ) P 2 ( u ) ) ] .
MSE = i = 1 L ( f i | f i | ) 2 L ,

Metrics