Abstract

A concrete design for an orthogonal polarization rotator at optical frequencies is presented. The subwavelength rotator is formed from a pair of ultrathin metamaterial plates of transparency and remarkable anisotropy. By traveling through the rotator, the incident light of linear polarization undergoes the azimuth-angle rotation by about 90° for a wide range of incident azimuth angles from 0° to 90°. The orthogonal rotator proposed here works with the 1/4 thickness of the incident wavelength and keeps the transmittance as high as 50%, showing a high efficiency as a subwavelength optical element.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, Appl. Phys. Lett. 82, 2568 (2003).
    [CrossRef]
  2. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Phys. Rev. Lett. 95, 227401 (2005).
    [CrossRef] [PubMed]
  3. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
    [CrossRef] [PubMed]
  4. M. Decker, M. W. Klein, M. Wegner, and S. Linden, Opt. Lett. 32, 856 (2007).
    [CrossRef] [PubMed]
  5. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Phys. Rev. B 79, 035407 (2009).
    [CrossRef]
  6. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, Phys. Rev. Lett. 102, 023901 (2009).
    [CrossRef] [PubMed]
  7. M. Iwanaga, J. Opt. Soc. Am. B 26, 1111 (2009).
    [CrossRef]
  8. M. Iwanaga, Appl. Phys. Lett. 92, 153102 (2008).
    [CrossRef]
  9. M. Iwanaga, Opt. Lett. 32, 1314 (2007).
    [CrossRef] [PubMed]
  10. L. Li, J. Opt. Soc. Am. A 14, 2758 (1997).
    [CrossRef]
  11. L. Li, J. Opt. Soc. Am. A 13, 1024 (1996).
    [CrossRef]
  12. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  13. E. D. Palik, Handbook of Optical Constants of Solids II (Academic, 1991).
  14. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).

2009 (3)

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Phys. Rev. B 79, 035407 (2009).
[CrossRef]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef] [PubMed]

M. Iwanaga, J. Opt. Soc. Am. B 26, 1111 (2009).
[CrossRef]

2008 (1)

M. Iwanaga, Appl. Phys. Lett. 92, 153102 (2008).
[CrossRef]

2007 (2)

2006 (1)

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

2005 (1)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

2003 (1)

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, Appl. Phys. Lett. 82, 2568 (2003).
[CrossRef]

1997 (1)

1996 (1)

1972 (1)

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Decker, M.

Dong, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Fedotov, V. A.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Phys. Rev. B 79, 035407 (2009).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

Hangyo, M.

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, Appl. Phys. Lett. 82, 2568 (2003).
[CrossRef]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Iwanaga, M.

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Kauranen, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Klein, M. W.

Kondo, T.

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, Appl. Phys. Lett. 82, 2568 (2003).
[CrossRef]

Koschny, T.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Li, J.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef] [PubMed]

Li, L.

Lindell, I. V.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).

Linden, S.

Lu, X.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef] [PubMed]

Miyamaru, F.

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, Appl. Phys. Lett. 82, 2568 (2003).
[CrossRef]

Nagashima, T.

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, Appl. Phys. Lett. 82, 2568 (2003).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids II (Academic, 1991).

Park, Y. -S.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef] [PubMed]

Plum, E.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Rogacheva, A. V.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Schwanecke, A. S.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

Sihvola, A. H.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).

Soukoulis, C. M.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Svirko, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Tretyakov, S. A.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).

Turunen, J.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

Viitanen, A. J.

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).

Wegner, M.

Zhang, S.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef] [PubMed]

Zhang, W.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef] [PubMed]

Zhang, X.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef] [PubMed]

Zheludev, N. I.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Phys. Rev. B 79, 035407 (2009).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

Zhou, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Phys. Rev. B 79, 035407 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, Appl. Phys. Lett. 82, 2568 (2003).
[CrossRef]

M. Iwanaga, Appl. Phys. Lett. 92, 153102 (2008).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Phys. Rev. B (2)

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, Phys. Rev. B 79, 035407 (2009).
[CrossRef]

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. Lett. (3)

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, Phys. Rev. Lett. 102, 023901 (2009).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, Phys. Rev. Lett. 95, 227401 (2005).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef] [PubMed]

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids II (Academic, 1991).

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic drawing of an orthogonal rotator and optical configuration. Gray parts denote metal, and white ones denote dielectric. (b) Polarizations of incident and transmitted light. The trajectory of electric field vector E t of transmitted light is projected onto the x y plane and is generally elliptic. Azimuth angles of incidence ψ in and transmission ψ t are shown.

Fig. 2
Fig. 2

(a) T (blue solid line) and R (gray dashed line) spectra of an orthogonal polarization rotator. It consists of a skew stack of SMDM plates, which have the unit cell of Ag 50 nm and Si 200 nm in the x y plane. The total thickness is 352 nm along the z axis. Incident plane wave illuminates the x y surface normally. (b) Dependence of Δ ψ on incident photon energy: open circles are under ψ in = 0 ° and crosses are under ψ in = 90 ° . (c) Rotated azimuth angles Δ ψ (closed circles) for ψ in at 0.90 eV. (d) Ellipticity (open circles) in (c).

Fig. 3
Fig. 3

Azimuth rotation Δ ψ (closed circles) in the stack structure with the total thickness of 176 nm, twice thinner than the structure in Fig. 2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ψ = min ( | ψ t ψ in | , 180 ° | ψ t ψ in | )
( D ¯ x D ¯ y B ¯ x B ¯ y ) = ( ε x x ε x y i χ x i β 1 ε y x ε y y i β 2 i χ y i χ x i β 2 μ x x μ x y i β 1 i χ y μ y x μ y y ) ( E ¯ x E ¯ y H ¯ x H ¯ y ) .

Metrics