Abstract

We present the performance limits on three-dimensional (3D) localization accuracy of currently used methods of wide-field superlocalization microscopy. The three methods investigated are double-helix microscopy, astigmatic imaging, and biplane detection. In the shot-noise limit, Cramer–Rao lower bound calculations show that, among these techniques, the double-helix microscope exhibits the best axial and 3D localization accuracy over short as well as long depth-of-field systems. The fundamental advantage of engineered point-spread function systems, like the double-helix, stems from the additional degrees of freedom available to control diffraction in three dimensions over variable regions of interest.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription