Abstract

We perform a detailed quantitative numerical analysis of a partially coherent quasi-cw fiber laser on the example of a high-Q normal dispersion cavity Raman fiber laser. The key role of precise spectral performances of fiber Bragg gratings forming the laser cavity is clarified. It is shown that cross-phase modulation between the pump and Stokes waves does not affect the generation. Amplitudes of different longitudinal modes strongly fluctuate, obeying the Gaussian distribution. As the intensity statistics is noticeably nonexponential, longitudinal modes should be correlated.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
    [CrossRef]
  2. J. Auyeung and A. Yariv, J. Opt. Soc. Am. 69, 803 (1979).
    [CrossRef]
  3. F. Vanholsbeeck, S. Coen, P. Emplit, C. Martinelli, F. Leplingard, and T. Sylvestre, Opt. Lett. 29, 2719 (2004).
    [CrossRef] [PubMed]
  4. E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, Opt. Express 18, 4469 (2010).
    [CrossRef] [PubMed]
  5. V. Roy, M. Piché, F. Babin, and G. Schinn, Opt. Express 13, 6791 (2005).
    [CrossRef] [PubMed]
  6. J. C. Travers, S. V. Popov, and J. R. Taylor, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CFC2.
    [PubMed]
  7. N. Dalloz, S. Randoux, and P. Suret, Opt. Lett. 35, 2505(2010).
    [CrossRef] [PubMed]
  8. A. A. Fotiadi and R. V. Kiyan, Opt. Lett. 23, 1805 (1998).
    [CrossRef]
  9. S. Kobtsev and S. Smirnov, Opt. Express 13, 6912 (2005).
    [CrossRef] [PubMed]
  10. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, Opt. Express 12, 2838 (2004).
    [CrossRef] [PubMed]
  11. M. Frosz, O. Bang, and A. Bjarklev, Opt. Express 14, 9391(2006).
    [CrossRef] [PubMed]
  12. F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, Opt. Express 13, 6615 (2005).
    [CrossRef] [PubMed]
  13. B. Barviau, S. Randoux, and P. Suret, Opt. Lett. 31, 1696(2006).
    [CrossRef] [PubMed]
  14. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  15. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, J. Opt. Soc. Am. B 24, 1729 (2007).
    [CrossRef]
  16. S. A. Babin, D. V. Churkin, A. A. Fotiadi, S. I. Kablukov, O. I. Medvedkov, and E. V. Podivilov, IEEE Photon. Technol. Lett. 17, 2553 (2005).
    [CrossRef]
  17. E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804 (2009).
    [CrossRef]
  18. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, V. Karalekas, E. V. Podivilov, S. I. Kablukov, and J. D. Ania-Castanon, Nat. Photon. 4, 231 (2010).
    [CrossRef]

2010

E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, Opt. Express 18, 4469 (2010).
[CrossRef] [PubMed]

N. Dalloz, S. Randoux, and P. Suret, Opt. Lett. 35, 2505(2010).
[CrossRef] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, V. Karalekas, E. V. Podivilov, S. I. Kablukov, and J. D. Ania-Castanon, Nat. Photon. 4, 231 (2010).
[CrossRef]

2009

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804 (2009).
[CrossRef]

2008

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[CrossRef]

2007

2006

2005

2004

1998

1979

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Ania-Castanon, J. D.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, V. Karalekas, E. V. Podivilov, S. I. Kablukov, and J. D. Ania-Castanon, Nat. Photon. 4, 231 (2010).
[CrossRef]

Ania-Castañón, J.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[CrossRef]

Auyeung, J.

Babin, S. A.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, V. Karalekas, E. V. Podivilov, S. I. Kablukov, and J. D. Ania-Castanon, Nat. Photon. 4, 231 (2010).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, J. Opt. Soc. Am. B 24, 1729 (2007).
[CrossRef]

S. A. Babin, D. V. Churkin, A. A. Fotiadi, S. I. Kablukov, O. I. Medvedkov, and E. V. Podivilov, IEEE Photon. Technol. Lett. 17, 2553 (2005).
[CrossRef]

Bang, O.

Barviau, B.

Bjarklev, A.

Churkin, D. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, V. Karalekas, E. V. Podivilov, S. I. Kablukov, and J. D. Ania-Castanon, Nat. Photon. 4, 231 (2010).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, J. Opt. Soc. Am. B 24, 1729 (2007).
[CrossRef]

S. A. Babin, D. V. Churkin, A. A. Fotiadi, S. I. Kablukov, O. I. Medvedkov, and E. V. Podivilov, IEEE Photon. Technol. Lett. 17, 2553 (2005).
[CrossRef]

Coen, S.

Dalloz, N.

El-Taher, A. E.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, V. Karalekas, E. V. Podivilov, S. I. Kablukov, and J. D. Ania-Castanon, Nat. Photon. 4, 231 (2010).
[CrossRef]

Emplit, P.

Falkovich, G.

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804 (2009).
[CrossRef]

Finot, C.

Fotiadi, A. A.

S. A. Babin, D. V. Churkin, A. A. Fotiadi, S. I. Kablukov, O. I. Medvedkov, and E. V. Podivilov, IEEE Photon. Technol. Lett. 17, 2553 (2005).
[CrossRef]

A. A. Fotiadi and R. V. Kiyan, Opt. Lett. 23, 1805 (1998).
[CrossRef]

Frosz, M.

González-Herráez, M.

Harper, P.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, V. Karalekas, E. V. Podivilov, S. I. Kablukov, and J. D. Ania-Castanon, Nat. Photon. 4, 231 (2010).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[CrossRef]

Ismagulov, A. E.

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, V. Karalekas, E. V. Podivilov, S. I. Kablukov, and J. D. Ania-Castanon, Nat. Photon. 4, 231 (2010).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, J. Opt. Soc. Am. B 24, 1729 (2007).
[CrossRef]

S. A. Babin, D. V. Churkin, A. A. Fotiadi, S. I. Kablukov, O. I. Medvedkov, and E. V. Podivilov, IEEE Photon. Technol. Lett. 17, 2553 (2005).
[CrossRef]

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, V. Karalekas, E. V. Podivilov, S. I. Kablukov, and J. D. Ania-Castanon, Nat. Photon. 4, 231 (2010).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[CrossRef]

Kiyan, R. V.

Kobtsev, S.

Lantz, E.

Leplingard, F.

Maillotte, H.

Martinelli, C.

Martin-Lopez, S.

Medvedkov, O. I.

S. A. Babin, D. V. Churkin, A. A. Fotiadi, S. I. Kablukov, O. I. Medvedkov, and E. V. Podivilov, IEEE Photon. Technol. Lett. 17, 2553 (2005).
[CrossRef]

Mezentsev, V. K.

E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, Opt. Express 18, 4469 (2010).
[CrossRef] [PubMed]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804 (2009).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[CrossRef]

Mussot, A.

Piché, M.

Pitois, S.

Podivilov, E. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, V. Karalekas, E. V. Podivilov, S. I. Kablukov, and J. D. Ania-Castanon, Nat. Photon. 4, 231 (2010).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[CrossRef]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, J. Opt. Soc. Am. B 24, 1729 (2007).
[CrossRef]

S. A. Babin, D. V. Churkin, A. A. Fotiadi, S. I. Kablukov, O. I. Medvedkov, and E. V. Podivilov, IEEE Photon. Technol. Lett. 17, 2553 (2005).
[CrossRef]

Popov, S. V.

J. C. Travers, S. V. Popov, and J. R. Taylor, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CFC2.
[PubMed]

Randoux, S.

Roy, V.

Schinn, G.

Smirnov, S.

Suret, P.

Sylvestre, T.

Taylor, J. R.

J. C. Travers, S. V. Popov, and J. R. Taylor, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CFC2.
[PubMed]

Travers, J. C.

J. C. Travers, S. V. Popov, and J. R. Taylor, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CFC2.
[PubMed]

Turitsyn, S. K.

E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, Opt. Express 18, 4469 (2010).
[CrossRef] [PubMed]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, V. Karalekas, E. V. Podivilov, S. I. Kablukov, and J. D. Ania-Castanon, Nat. Photon. 4, 231 (2010).
[CrossRef]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804 (2009).
[CrossRef]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[CrossRef]

Turitsyna, E. G.

E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, Opt. Express 18, 4469 (2010).
[CrossRef] [PubMed]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804 (2009).
[CrossRef]

Vanholsbeeck, F.

Yariv, A.

IEEE Photon. Technol. Lett.

S. A. Babin, D. V. Churkin, A. A. Fotiadi, S. I. Kablukov, O. I. Medvedkov, and E. V. Podivilov, IEEE Photon. Technol. Lett. 17, 2553 (2005).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

Nat. Photon.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, V. Karalekas, E. V. Podivilov, S. I. Kablukov, and J. D. Ania-Castanon, Nat. Photon. 4, 231 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[CrossRef]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804 (2009).
[CrossRef]

Other

J. C. Travers, S. V. Popov, and J. R. Taylor, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CFC2.
[PubMed]

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Total generated intracavity power depending on FBG width ( 1.0 nm , curve; 1.1 nm , boxes; and 0.9 nm , circles) and relative difference of FBG central frequencies ( 0 nm , curve and 0.2 nm , triangles). (b) Total generated intracavity power: experimental dots [15], numerically calculated without XPM (curve) and with XPM (triangles).

Fig. 2
Fig. 2

(a) Intracavity spectrum at 3.5 W : experimental dots, calculated without XPM using multimode (blue curve) or SF (red curve) initial pump conditions. Taking into account XPM provides spectra indistinguishable from those shown. Inset, spectrum without averaging. (b) Typical time dynamics at 3.5 W . Inset, ACF.

Fig. 3
Fig. 3

(a) Spectral power density PDF and (b) intensity PDF at 0.11 W (red curve) and 3.5 W (black curve) of generated power.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A p ± z + i 2 β 2 p 2 A p ± t 2 + α p 2 A p ± = i γ p ( | A p ± | 2 + 2 | A s ± | 2 ) A p ± g p 2 ( | A s ± | 2 + | A s | 2 ) A p ± ,
A s ± z + ( 1 v s 1 v p ) A s ± t + i 2 β 2 s 2 A s ± t 2 + α s 2 A s ± = i γ s ( | A s ± | 2 + 2 | A p ± | 2 ) A s ± + g s 2 ( | A p ± | 2 + | A p | 2 ) A s ± ,

Metrics