Abstract

We construct a line-by-line pulse shaper using a grism (grating plus prism) dispersive element, which provides constant angular dispersion over 13.4THz centered at ~311THz (965nm). When combined with a dual-mask liquid crystal modulator, this grism-based shaper is capable of line-by-line amplitude and phase control of over 600 modes of a 21GHz stabilized optical frequency comb.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Heritage, A. M. Weiner, and R. N. Thurston, Opt. Lett. 10, 609 (1985).
    [CrossRef] [PubMed]
  2. M. M. Wefers and K. A. Nelson, Opt. Lett. 18, 2032 (1993).
    [CrossRef] [PubMed]
  3. A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
    [CrossRef]
  4. Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, Opt. Lett. 30, 1557 (2005).
    [CrossRef] [PubMed]
  5. Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photon. 1, 463 (2007).
    [CrossRef]
  6. M. S. Kirchner, T. M. Fortier, D. Braje, A. M. Weiner, L. Hollbert, S. A. Diddams, Ultrafast Phenomena XVI(Springer, 2009).
  7. N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, Opt. Lett. 32, 865 (2007).
    [CrossRef] [PubMed]
  8. V. R. Supradeepa, Ch.-B. Huang, D. E. Leaird, and A. M. Weiner, Opt. Express 16, 11878 (2008).
    [CrossRef] [PubMed]
  9. W. A. Traub, J. Opt. Soc. Am. A 7, 1779 (1990).
    [CrossRef]
  10. S. Kane and J. Squier, J. Opt. Soc. Am. B 14, 661 (1997).
    [CrossRef]
  11. E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, R. Jimenez, S. Kane, R. Huff, C. Durfee, and J. Squier, Opt. Lett. 31, 3363(2006).
    [CrossRef] [PubMed]
  12. M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, Opt. Lett. 34, 872 (2009).
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

2007 (2)

2006 (1)

2005 (1)

1997 (1)

1995 (1)

A. M. Weiner, Prog. Quantum Electron. 19, 161 (1995).
[CrossRef]

1993 (1)

1990 (1)

1985 (1)

Braje, D.

M. S. Kirchner, T. M. Fortier, D. Braje, A. M. Weiner, L. Hollbert, S. A. Diddams, Ultrafast Phenomena XVI(Springer, 2009).

Braje, D. A.

Cao, J.

Diddams, S. A.

M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, Opt. Lett. 34, 872 (2009).
[CrossRef] [PubMed]

M. S. Kirchner, T. M. Fortier, D. Braje, A. M. Weiner, L. Hollbert, S. A. Diddams, Ultrafast Phenomena XVI(Springer, 2009).

Durfee, C.

Fontaine, N. K.

Fortier, T. M.

M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, Opt. Lett. 34, 872 (2009).
[CrossRef] [PubMed]

M. S. Kirchner, T. M. Fortier, D. Braje, A. M. Weiner, L. Hollbert, S. A. Diddams, Ultrafast Phenomena XVI(Springer, 2009).

Gaudiosi, D. M.

Gibson, E. A.

Heritage, J. P.

Hollberg, L.

Hollbert, L.

M. S. Kirchner, T. M. Fortier, D. Braje, A. M. Weiner, L. Hollbert, S. A. Diddams, Ultrafast Phenomena XVI(Springer, 2009).

Huang, C.

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photon. 1, 463 (2007).
[CrossRef]

Huang, Ch.-B.

Huff, R.

Jiang, W.

Jiang, Z.

Z. Jiang, C. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photon. 1, 463 (2007).
[CrossRef]

Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, Opt. Lett. 30, 1557 (2005).
[CrossRef] [PubMed]

Jimenez, R.

Kane, S.

Kapteyn, H. C.

Karalar, A.

Kirchner, M. S.

M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, Opt. Lett. 34, 872 (2009).
[CrossRef] [PubMed]

M. S. Kirchner, T. M. Fortier, D. Braje, A. M. Weiner, L. Hollbert, S. A. Diddams, Ultrafast Phenomena XVI(Springer, 2009).

Kolner, B. H.

Leaird, D. E.

Nelson, K. A.

Okamoto, K.

Scott, R. P.

Seo, D. S.

Squier, J.

Supradeepa, V. R.

Thurston, R. N.

Traub, W. A.

Wefers, M. M.

Weiner, A. M.

Yoo, S. J. B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Grating-based line-by-line pulse shaper. Each comb mode is independently controlled by one or more pixels of a modulator. The modes are then recombined with an identical lens-grating system or with retroreflection.

Fig. 2
Fig. 2

(a) Mode spacing ( Δ x ) as a function of mode number with mode 0 at 965 nm . The mode spacing is close to 100 μm / mode only in the center. (b) Integrated residual mode walk-off shows that fewer than 200 modes stay aligned with the correct SLM pixel. Only about 100 modes are close enough to the center of the pixel to avoid spatial overlap with neighboring pixels.

Fig. 3
Fig. 3

Reflection grism geometry. The angled dielectric interface of the prism serves to alter the dispersion of the grating. Input and output angles are measured clockwise with respect to grating normal.

Fig. 4
Fig. 4

(a) Mode spacing ( Δ x ) as a function of mode number with the theory (dashed) and measurement (solid) showing good agreement. The mode spacing is close to 100 μm / mode over the entire aperture of the SLM (640 pixels). (b) Integrated mode walk-off shows that over 600 modes are within 10 μm of pixel center. Theory (dashed curves) and measurement (solid curves) again show good agreement.

Fig. 5
Fig. 5

Example CCD image showing 70 comb modes spaced by 100 μm .

Fig. 6
Fig. 6

Intensity beam waist measured across the aperture of the SLM shows beam waists near 25 μm for most of the comb.

Fig. 7
Fig. 7

Top, OSA traces showing the shaped frequency comb on a linear scale with all pixels in the “on” state (solid red curve) and pixels alternating between “on” and “off” (dashed black curves). Bottom, zoomed sections of the top traces showing that the alignment of the comb modes with the SLM pixels is good across the whole bandwidth of the frequency comb.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

θ out = sin 1 [ n ( λ ) sin ( sin 1 [ m λ n ( λ ) d sin ( sin 1 [ 1 n ( λ ) sin ( θ in α ) ] + α ) ] α ) ] + α ,

Metrics