Abstract

A model is proposed to study the average capacity optimization in free-space optical (FSO) channels, accounting for effects of atmospheric turbulence and pointing errors. For a given transmitter laser power, it is shown that both transmitter beam divergence angle and beam waist can be tuned to maximize the average capacity. Meanwhile, their optimum values strongly depend on the jitter and operation wavelength. These results can be helpful for designing FSO communication systems.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
    [CrossRef]
  2. S. Arnon, IEEE Trans. Wireless Commun. 24, 626 (2003).
    [CrossRef]
  3. A. A. Farid and S. Hranilovic, J. Lightwave Technol. 25, 1702 (2007).
    [CrossRef]
  4. H. E. Nistazakis, E. A. Karagianni, A. D. Tsigopoulos, M. E. Fafalios, and G. S. Tombras, J. Lightwave Technol. 27, 974(2009).
    [CrossRef]
  5. D. K. Borah and D. G. Voelz, J. Lightwave Technol. 27, 3965(2009).
    [CrossRef]
  6. C. Liu, Y. Yao, Y. Sun, and X. Zhao, Chin. Opt. Lett. 8, 537(2010).
    [CrossRef]
  7. H. G. Sandalidis, T. A. Tsiftsis, G. K. Karagiannidis, and M. Uysal, IEEE Commun. Lett. 12, 44 (2008).
    [CrossRef]
  8. H. G. Sandalidis, T. A. Tsiftsis, and G. K. Karagiannidis, J. Lightwave Technol. 27, 4440 (2009).
    [CrossRef]
  9. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 2007).
  10. V. S. Adamchik and O. I. Marichev, in Proceedings of International Conference on Symbolic and Algebraic Computation, S.Watanabe and M.Nagata, eds. (ACM, 1990), pp. 212–224.
  11. E. J. Lee and V. W. S. Chan, J. Opt. Commun. Netw. 1, 463 (2009).
    [CrossRef]

2010

2009

2008

H. G. Sandalidis, T. A. Tsiftsis, G. K. Karagiannidis, and M. Uysal, IEEE Commun. Lett. 12, 44 (2008).
[CrossRef]

2007

2003

S. Arnon, IEEE Trans. Wireless Commun. 24, 626 (2003).
[CrossRef]

Adamchik, V. S.

V. S. Adamchik and O. I. Marichev, in Proceedings of International Conference on Symbolic and Algebraic Computation, S.Watanabe and M.Nagata, eds. (ACM, 1990), pp. 212–224.

Andrews, L. C.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[CrossRef]

Arnon, S.

S. Arnon, IEEE Trans. Wireless Commun. 24, 626 (2003).
[CrossRef]

Borah, D. K.

Chan, V. W. S.

Fafalios, M. E.

Farid, A. A.

Gradshteyn, I. S.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 2007).

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[CrossRef]

Hranilovic, S.

Karagianni, E. A.

Karagiannidis, G. K.

H. G. Sandalidis, T. A. Tsiftsis, and G. K. Karagiannidis, J. Lightwave Technol. 27, 4440 (2009).
[CrossRef]

H. G. Sandalidis, T. A. Tsiftsis, G. K. Karagiannidis, and M. Uysal, IEEE Commun. Lett. 12, 44 (2008).
[CrossRef]

Lee, E. J.

Liu, C.

Marichev, O. I.

V. S. Adamchik and O. I. Marichev, in Proceedings of International Conference on Symbolic and Algebraic Computation, S.Watanabe and M.Nagata, eds. (ACM, 1990), pp. 212–224.

Nistazakis, H. E.

Phillips, R. L.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[CrossRef]

Ryzhik, I. M.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 2007).

Sandalidis, H. G.

H. G. Sandalidis, T. A. Tsiftsis, and G. K. Karagiannidis, J. Lightwave Technol. 27, 4440 (2009).
[CrossRef]

H. G. Sandalidis, T. A. Tsiftsis, G. K. Karagiannidis, and M. Uysal, IEEE Commun. Lett. 12, 44 (2008).
[CrossRef]

Sun, Y.

Tombras, G. S.

Tsiftsis, T. A.

H. G. Sandalidis, T. A. Tsiftsis, and G. K. Karagiannidis, J. Lightwave Technol. 27, 4440 (2009).
[CrossRef]

H. G. Sandalidis, T. A. Tsiftsis, G. K. Karagiannidis, and M. Uysal, IEEE Commun. Lett. 12, 44 (2008).
[CrossRef]

Tsigopoulos, A. D.

Uysal, M.

H. G. Sandalidis, T. A. Tsiftsis, G. K. Karagiannidis, and M. Uysal, IEEE Commun. Lett. 12, 44 (2008).
[CrossRef]

Voelz, D. G.

Yao, Y.

Zhao, X.

Chin. Opt. Lett.

IEEE Commun. Lett.

H. G. Sandalidis, T. A. Tsiftsis, G. K. Karagiannidis, and M. Uysal, IEEE Commun. Lett. 12, 44 (2008).
[CrossRef]

IEEE Trans. Wireless Commun.

S. Arnon, IEEE Trans. Wireless Commun. 24, 626 (2003).
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Netw.

Other

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE, 2001).
[CrossRef]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 2007).

V. S. Adamchik and O. I. Marichev, in Proceedings of International Conference on Symbolic and Algebraic Computation, S.Watanabe and M.Nagata, eds. (ACM, 1990), pp. 212–224.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagram of FSO communication in an atmospheric optical link.

Fig. 2
Fig. 2

Average channel capacity C / B versus the normalized jitter σ s / a for specific metrics: (a) operation wavelength λ, (b) receiver aperture diameter D, (c) link length L, (d) receiver beam width W z , (e) transmitted laser power P t .

Fig. 3
Fig. 3

Average channel capacity C / B as a function of (a) beam divergence angle for various normalized jitter and (b) transmitter beam waist for various operation wavelengths. Here D = 0.4 m , C n 2 = 6.5 × 10 14 m 2 / 3 , L = 1000 m , and P t = 40 mW .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S y = h a h p S x + n ,
f h ( h ) = ( α β ) ( α + β ) / 2 γ 2 h ( α + β ) / 2 1 Γ ( α ) Γ ( β ) A 0 ( α + β ) / 2 × G 1 , 3 3 , 0 [ α β h A 0 | γ 2 γ 2 1 , α 1 , β 1 ] ,
α = [ exp ( 0.49 β 02 ( 1 + 0.18 d 2 + 0.56 β 0 12 / 5 ) 7 / 6 ) 1 ] 1 ,
β = [ exp ( 0.51 β 0 2 ( 1 + 0.69 β 0 12 / 5 ) 5 / 6 ( 1 + 0.9 d 2 + 0.62 d 2 β 0 12 / 5 ) 5 / 6 ) 1 ] 1 ,
C = 0 B log 2 ( 1 + SNR ( h ) ) f h ( h ) d h ,
C = 2 α + β 3 B γ 2 Γ ( α ) Γ ( β ) π ln 2 × G 8 , 4 1 , 8 [ 32 P t 2 A 02 ( α β ) 2 σ n 2 | 1 , 1 , 1 γ 2 2 , 2 γ 2 2 , 1 α 2 , 2 α 2 , 1 β 2 , 2 β 2 1 , 0 , γ 2 2 , 1 γ 2 2 ] .

Metrics