Abstract

We demonstrate a tilt-modulated phase imaging method to adjust the gap inconsistency for wafer-mask leveling in proximity lithography. Two gratings with close periods are etched on the mask and used as leveling marks. At the illumination of a monochromatic planar wave, the diffracted image of one grating is projected back onto the other one beside it through reflection at the wafer surface. Any wafer-mask tilts in two orthogonal sections are directly modulated into the phase distribution of the interference field and can be directly remedied according to the frequency and angle deviation of the two sets of fringes. Finally, wafer-mask leveling can be achieved at only one spot with preserved accuracy. Computational and experimental results confirm that tilts at the magnitude of 103rad can be readily resolved by this method.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. E. Moon, P. N. Everett, M. W. Meinhold, M. K. Mondol, and H. I. Smith, J. Vac. Sci. Technol. B 17, 2698(1999).
    [CrossRef]
  2. J. E. Vanderwerf, J. Vac. Sci. Technol. B 10, 735(1992).
    [CrossRef]
  3. W. Yan, Y. Yang, W. Chen, S. Hu, and S. Zhou, Appl. Opt. 49, G1 (2010).
    [CrossRef]
  4. D. Kim, W. I. Jang, B.-Y. Choi, Y. I. Lee, J.-H. Lee, H. J. Yoo, and S. W. Kang, Proc. SPIE 2197, 997 (1994).
    [CrossRef]
  5. T. Huang, S. Liu, P. Yi, and T. Shi, Proc. SPIE 7160, 71602X (2009).
  6. D. C. Flanders and T. M. Lyszczarz, J. Vac. Sci. Technol. B 1, 1196 (1983).
    [CrossRef]
  7. Y. Oshida, M. Tanaka, T. Tanimoto, and T. Kurosaki, Proc. SPIE 1264, 244 (1990).
  8. K. Kato, T. Itoh, and N. Atoda, Microelectron. Eng. 23, 185 (1994).
    [CrossRef]

2010 (1)

2009 (1)

T. Huang, S. Liu, P. Yi, and T. Shi, Proc. SPIE 7160, 71602X (2009).

1999 (1)

E. E. Moon, P. N. Everett, M. W. Meinhold, M. K. Mondol, and H. I. Smith, J. Vac. Sci. Technol. B 17, 2698(1999).
[CrossRef]

1994 (2)

K. Kato, T. Itoh, and N. Atoda, Microelectron. Eng. 23, 185 (1994).
[CrossRef]

D. Kim, W. I. Jang, B.-Y. Choi, Y. I. Lee, J.-H. Lee, H. J. Yoo, and S. W. Kang, Proc. SPIE 2197, 997 (1994).
[CrossRef]

1992 (1)

J. E. Vanderwerf, J. Vac. Sci. Technol. B 10, 735(1992).
[CrossRef]

1990 (1)

Y. Oshida, M. Tanaka, T. Tanimoto, and T. Kurosaki, Proc. SPIE 1264, 244 (1990).

1983 (1)

D. C. Flanders and T. M. Lyszczarz, J. Vac. Sci. Technol. B 1, 1196 (1983).
[CrossRef]

Atoda, N.

K. Kato, T. Itoh, and N. Atoda, Microelectron. Eng. 23, 185 (1994).
[CrossRef]

Chen, W.

Choi, B.-Y.

D. Kim, W. I. Jang, B.-Y. Choi, Y. I. Lee, J.-H. Lee, H. J. Yoo, and S. W. Kang, Proc. SPIE 2197, 997 (1994).
[CrossRef]

Everett, P. N.

E. E. Moon, P. N. Everett, M. W. Meinhold, M. K. Mondol, and H. I. Smith, J. Vac. Sci. Technol. B 17, 2698(1999).
[CrossRef]

Flanders, D. C.

D. C. Flanders and T. M. Lyszczarz, J. Vac. Sci. Technol. B 1, 1196 (1983).
[CrossRef]

Hu, S.

Huang, T.

T. Huang, S. Liu, P. Yi, and T. Shi, Proc. SPIE 7160, 71602X (2009).

Itoh, T.

K. Kato, T. Itoh, and N. Atoda, Microelectron. Eng. 23, 185 (1994).
[CrossRef]

Jang, W. I.

D. Kim, W. I. Jang, B.-Y. Choi, Y. I. Lee, J.-H. Lee, H. J. Yoo, and S. W. Kang, Proc. SPIE 2197, 997 (1994).
[CrossRef]

Kang, S. W.

D. Kim, W. I. Jang, B.-Y. Choi, Y. I. Lee, J.-H. Lee, H. J. Yoo, and S. W. Kang, Proc. SPIE 2197, 997 (1994).
[CrossRef]

Kato, K.

K. Kato, T. Itoh, and N. Atoda, Microelectron. Eng. 23, 185 (1994).
[CrossRef]

Kim, D.

D. Kim, W. I. Jang, B.-Y. Choi, Y. I. Lee, J.-H. Lee, H. J. Yoo, and S. W. Kang, Proc. SPIE 2197, 997 (1994).
[CrossRef]

Kurosaki, T.

Y. Oshida, M. Tanaka, T. Tanimoto, and T. Kurosaki, Proc. SPIE 1264, 244 (1990).

Lee, J.-H.

D. Kim, W. I. Jang, B.-Y. Choi, Y. I. Lee, J.-H. Lee, H. J. Yoo, and S. W. Kang, Proc. SPIE 2197, 997 (1994).
[CrossRef]

Lee, Y. I.

D. Kim, W. I. Jang, B.-Y. Choi, Y. I. Lee, J.-H. Lee, H. J. Yoo, and S. W. Kang, Proc. SPIE 2197, 997 (1994).
[CrossRef]

Liu, S.

T. Huang, S. Liu, P. Yi, and T. Shi, Proc. SPIE 7160, 71602X (2009).

Lyszczarz, T. M.

D. C. Flanders and T. M. Lyszczarz, J. Vac. Sci. Technol. B 1, 1196 (1983).
[CrossRef]

Meinhold, M. W.

E. E. Moon, P. N. Everett, M. W. Meinhold, M. K. Mondol, and H. I. Smith, J. Vac. Sci. Technol. B 17, 2698(1999).
[CrossRef]

Mondol, M. K.

E. E. Moon, P. N. Everett, M. W. Meinhold, M. K. Mondol, and H. I. Smith, J. Vac. Sci. Technol. B 17, 2698(1999).
[CrossRef]

Moon, E. E.

E. E. Moon, P. N. Everett, M. W. Meinhold, M. K. Mondol, and H. I. Smith, J. Vac. Sci. Technol. B 17, 2698(1999).
[CrossRef]

Oshida, Y.

Y. Oshida, M. Tanaka, T. Tanimoto, and T. Kurosaki, Proc. SPIE 1264, 244 (1990).

Shi, T.

T. Huang, S. Liu, P. Yi, and T. Shi, Proc. SPIE 7160, 71602X (2009).

Smith, H. I.

E. E. Moon, P. N. Everett, M. W. Meinhold, M. K. Mondol, and H. I. Smith, J. Vac. Sci. Technol. B 17, 2698(1999).
[CrossRef]

Tanaka, M.

Y. Oshida, M. Tanaka, T. Tanimoto, and T. Kurosaki, Proc. SPIE 1264, 244 (1990).

Tanimoto, T.

Y. Oshida, M. Tanaka, T. Tanimoto, and T. Kurosaki, Proc. SPIE 1264, 244 (1990).

Vanderwerf, J. E.

J. E. Vanderwerf, J. Vac. Sci. Technol. B 10, 735(1992).
[CrossRef]

Yan, W.

Yang, Y.

Yi, P.

T. Huang, S. Liu, P. Yi, and T. Shi, Proc. SPIE 7160, 71602X (2009).

Yoo, H. J.

D. Kim, W. I. Jang, B.-Y. Choi, Y. I. Lee, J.-H. Lee, H. J. Yoo, and S. W. Kang, Proc. SPIE 2197, 997 (1994).
[CrossRef]

Zhou, S.

Appl. Opt. (1)

J. Vac. Sci. Technol. B (3)

E. E. Moon, P. N. Everett, M. W. Meinhold, M. K. Mondol, and H. I. Smith, J. Vac. Sci. Technol. B 17, 2698(1999).
[CrossRef]

J. E. Vanderwerf, J. Vac. Sci. Technol. B 10, 735(1992).
[CrossRef]

D. C. Flanders and T. M. Lyszczarz, J. Vac. Sci. Technol. B 1, 1196 (1983).
[CrossRef]

Microelectron. Eng. (1)

K. Kato, T. Itoh, and N. Atoda, Microelectron. Eng. 23, 185 (1994).
[CrossRef]

Proc. SPIE (3)

Y. Oshida, M. Tanaka, T. Tanimoto, and T. Kurosaki, Proc. SPIE 1264, 244 (1990).

D. Kim, W. I. Jang, B.-Y. Choi, Y. I. Lee, J.-H. Lee, H. J. Yoo, and S. W. Kang, Proc. SPIE 2197, 997 (1994).
[CrossRef]

T. Huang, S. Liu, P. Yi, and T. Shi, Proc. SPIE 7160, 71602X (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Interference of two beams B 1 and B 2 diffracted from G 1 and G 2 .

Fig. 2
Fig. 2

Two sets of gratings etched beside each other on a mask.

Fig. 3
Fig. 3

Distribution of two sets of fringes when the wafer is tilted in (a) both sections, (b) only the cross section, (c) only the longitudinal section, and (d) leveled.

Fig. 4
Fig. 4

Experimental results that correspond to the wafer tilted (a) in both sections, (b) only in the cross section, (c) only in the longitudinal section, and (d) leveled.

Fig. 5
Fig. 5

Normalized frequency and angular deviation of two sets of fringes with respect to tilt in the (a) cross section and (b) longitudinal section.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 + 2 I 1 I 2 cos [ 2 π λ ( sin θ 1 sin θ 2 ) x + φ 0 ] .
I = I 1 + I 2 + 2 I 1 I 2 cos ( 2 π f 0 x + φ 0 ) ,
I = I 1 + I 2 + 2 I 1 I 2 cos ( 2 π F · X + φ 0 ) ,
F = 1 λ ( tan ( θ 1 + 2 δ θ ) csc 2 ( θ 1 + 2 δ θ ) + tan 2 2 δ φ sin θ 2 , tan 2 δ φ csc 2 ( θ 1 + 2 δ θ ) + tan 2 2 δ φ )
F = f exp ( j θ f ) ,
f = | F | sin ( θ 1 + 2 δ θ ) sin θ 2 λ f 0 + 2 δ θ λ · cos θ 1 ,
θ f a tan [ cos ( θ 1 + 2 δ θ ) tan 2 δ φ sin ( θ 1 + 2 δ θ ) sin θ 2 ] .

Metrics