Abstract

We present a method for correcting coherence gate curvature caused by scanning-induced path length variations in spectral-domain high-NA optical coherence imaging systems. These variations cause curvature artifacts in optical coherence tomography and effectively restrict the field of view in optical coherence microscopy (OCM). Here we show that the coherence gate curvature can be measured and corrected by recovering the phase of the analytic signal from a calibration image. This phase information can be used directly to process OCM images allowing the coherence gate curvature, as well as any order of system dispersion, to be corrected in a computationally efficient manner. We also discuss the use of various image quality metrics that can be used to adjust the calibrated phase in order to keep the coherence and confocal gates aligned in tissue.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Pircher, B. Baumann, E. Gotzinger, H. Sattmann, and C. K. Hitzenberger, Opt. Lett. 34, 1750 (2009).
    [CrossRef] [PubMed]
  2. A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, J. Biomed. Opt. 3, 12(1998).
    [CrossRef]
  3. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, Opt. Lett. 19, 590 (1994).
    [CrossRef] [PubMed]
  4. E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz, Opt. Lett. 24, 969 (1999).
    [CrossRef]
  5. C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, Appl. Phys. Lett. 88, 053901 (2006).
    [CrossRef]
  6. S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, J. Biomed. Opt. 11, 020502 (2006).
    [CrossRef] [PubMed]
  7. C. Joo, K. H. Kim, and J. F. de Boer, Opt. Lett. 32, 623 (2007).
    [CrossRef] [PubMed]
  8. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, Nature Phys. 3, 129 (2007).
    [CrossRef]
  9. B. W. Graf, Z. Jiang, H. Tu, and S. A. Boppart, J. Biomed. Opt. 14, 034019 (2009).
    [CrossRef] [PubMed]
  10. R. G. Chelliyil, T. S. Ralston, D. L. Marks, and S. A. Boppart, J. Biomed. Opt. 13, 044013 (2008).
    [CrossRef] [PubMed]
  11. A. D. Aguirre, J. Sawinski, S. W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, Opt. Express 18, 4222 (2010).
    [CrossRef] [PubMed]
  12. J. Kautsky, J. Flusser, B. Zitova, and S. Simberova, Pattern Recogn. Lett. 23, 1785 (2002).
    [CrossRef]

2010

2009

2008

R. G. Chelliyil, T. S. Ralston, D. L. Marks, and S. A. Boppart, J. Biomed. Opt. 13, 044013 (2008).
[CrossRef] [PubMed]

2007

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, Nature Phys. 3, 129 (2007).
[CrossRef]

C. Joo, K. H. Kim, and J. F. de Boer, Opt. Lett. 32, 623 (2007).
[CrossRef] [PubMed]

2006

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, Appl. Phys. Lett. 88, 053901 (2006).
[CrossRef]

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, J. Biomed. Opt. 11, 020502 (2006).
[CrossRef] [PubMed]

2002

J. Kautsky, J. Flusser, B. Zitova, and S. Simberova, Pattern Recogn. Lett. 23, 1785 (2002).
[CrossRef]

1999

1998

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, J. Biomed. Opt. 3, 12(1998).
[CrossRef]

1994

Aguirre, A. D.

Amblard, F.

Baumann, B.

Beaurepaire, E.

Boppart, S. A.

B. W. Graf, Z. Jiang, H. Tu, and S. A. Boppart, J. Biomed. Opt. 14, 034019 (2009).
[CrossRef] [PubMed]

R. G. Chelliyil, T. S. Ralston, D. L. Marks, and S. A. Boppart, J. Biomed. Opt. 13, 044013 (2008).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, Nature Phys. 3, 129 (2007).
[CrossRef]

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, Appl. Phys. Lett. 88, 053901 (2006).
[CrossRef]

Carney, P. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, Nature Phys. 3, 129 (2007).
[CrossRef]

Chelliyil, R. G.

R. G. Chelliyil, T. S. Ralston, D. L. Marks, and S. A. Boppart, J. Biomed. Opt. 13, 044013 (2008).
[CrossRef] [PubMed]

Chen, Z.

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, J. Biomed. Opt. 11, 020502 (2006).
[CrossRef] [PubMed]

de Boer, J. F.

Denk, W.

Dobre, G. M.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, J. Biomed. Opt. 3, 12(1998).
[CrossRef]

Fitzke, F. W.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, J. Biomed. Opt. 3, 12(1998).
[CrossRef]

Flusser, J.

J. Kautsky, J. Flusser, B. Zitova, and S. Simberova, Pattern Recogn. Lett. 23, 1785 (2002).
[CrossRef]

Fujimoto, J. G.

Gotzinger, E.

Graf, B. W.

B. W. Graf, Z. Jiang, H. Tu, and S. A. Boppart, J. Biomed. Opt. 14, 034019 (2009).
[CrossRef] [PubMed]

Hee, M. R.

Hitzenberger, C. K.

Huang, S. W.

Izatt, J. A.

Jackson, D. A.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, J. Biomed. Opt. 3, 12(1998).
[CrossRef]

Jiang, Z.

B. W. Graf, Z. Jiang, H. Tu, and S. A. Boppart, J. Biomed. Opt. 14, 034019 (2009).
[CrossRef] [PubMed]

Joo, C.

Kautsky, J.

J. Kautsky, J. Flusser, B. Zitova, and S. Simberova, Pattern Recogn. Lett. 23, 1785 (2002).
[CrossRef]

Kim, K. H.

Krasieva, T. B.

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, J. Biomed. Opt. 11, 020502 (2006).
[CrossRef] [PubMed]

Luo, W.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, Appl. Phys. Lett. 88, 053901 (2006).
[CrossRef]

Marks, D. L.

R. G. Chelliyil, T. S. Ralston, D. L. Marks, and S. A. Boppart, J. Biomed. Opt. 13, 044013 (2008).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, Nature Phys. 3, 129 (2007).
[CrossRef]

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, Appl. Phys. Lett. 88, 053901 (2006).
[CrossRef]

Mertz, J.

Moreaux, L.

Owen, G. M.

Pircher, M.

Podoleanu, A. G.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, J. Biomed. Opt. 3, 12(1998).
[CrossRef]

Ralston, T.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, Appl. Phys. Lett. 88, 053901 (2006).
[CrossRef]

Ralston, T. S.

R. G. Chelliyil, T. S. Ralston, D. L. Marks, and S. A. Boppart, J. Biomed. Opt. 13, 044013 (2008).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, Nature Phys. 3, 129 (2007).
[CrossRef]

Sattmann, H.

Sawinski, J.

Seeger, M.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, J. Biomed. Opt. 3, 12(1998).
[CrossRef]

Simberova, S.

J. Kautsky, J. Flusser, B. Zitova, and S. Simberova, Pattern Recogn. Lett. 23, 1785 (2002).
[CrossRef]

Swanson, E. A.

Tan, W.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, Appl. Phys. Lett. 88, 053901 (2006).
[CrossRef]

Tang, S.

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, J. Biomed. Opt. 11, 020502 (2006).
[CrossRef] [PubMed]

Tromberg, B. J.

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, J. Biomed. Opt. 11, 020502 (2006).
[CrossRef] [PubMed]

Tu, H.

B. W. Graf, Z. Jiang, H. Tu, and S. A. Boppart, J. Biomed. Opt. 14, 034019 (2009).
[CrossRef] [PubMed]

Vinegoni, C.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, Appl. Phys. Lett. 88, 053901 (2006).
[CrossRef]

Webb, D. J.

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, J. Biomed. Opt. 3, 12(1998).
[CrossRef]

Zhou, C.

Zitova, B.

J. Kautsky, J. Flusser, B. Zitova, and S. Simberova, Pattern Recogn. Lett. 23, 1785 (2002).
[CrossRef]

Appl. Phys. Lett.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, Appl. Phys. Lett. 88, 053901 (2006).
[CrossRef]

J. Biomed. Opt.

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, J. Biomed. Opt. 11, 020502 (2006).
[CrossRef] [PubMed]

B. W. Graf, Z. Jiang, H. Tu, and S. A. Boppart, J. Biomed. Opt. 14, 034019 (2009).
[CrossRef] [PubMed]

R. G. Chelliyil, T. S. Ralston, D. L. Marks, and S. A. Boppart, J. Biomed. Opt. 13, 044013 (2008).
[CrossRef] [PubMed]

A. G. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, and F. W. Fitzke, J. Biomed. Opt. 3, 12(1998).
[CrossRef]

Nature Phys.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, Nature Phys. 3, 129 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Pattern Recogn. Lett.

J. Kautsky, J. Flusser, B. Zitova, and S. Simberova, Pattern Recogn. Lett. 23, 1785 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic for a simplified non telecentric beam-scanning system. The dotted gray line shows the flat focal plane, while the dashed gray curve shows the curved coherence gate. (b) Scanning in two dimensions results in a circular pattern of path length variations across the field of view. (c) The calculated maximum path length difference plane across a fixed FOV (solid blue curve) and the Rayleigh range of the focused beam as a function of the focal length (dashed red curve).

Fig. 2
Fig. 2

(a) Schematic of the sample arm. (b) The spectral interference pattern and the unwrapped phase of the analytic signal with a mirror at the focus of the sample arm. (c) Image mapping the optical delay to the focal plane, showing the curvature of the coherence gate caused by scanning over an 200 μm FOV. (d) FFT of the raw spectrum. (e) FFT after multiplying the spectrum by the conjugate of the measured spectral phase profile. The arrows indicate the focus depth.

Fig. 3
Fig. 3

OCM images of (a), (b) a standard USAF resolution chart, (c), (d) 50 nm Fe 2 O 3 particles embedded in silicon gel, and (e), (f) in vivo human skin epidermis. Images are shown in (b), (d), (f) with and (a), (c), (e) without correcting the coherence gate curvature. The scale bar is 45 μm .

Fig. 4
Fig. 4

(a) Image quality metrics that can be used to find the depth corresponding to the focus. Metrics are plotted as a function of shift from the calibration focus for OCM images of in vivo human skin epidermis. OCM images are shown at (b) 34, (c) 26, and (d) 19 μm , along with (e) a corresponding MPM image. To reduce speckle, the OCM images in (b)–(d) are averages of three en face planes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A ( x , y , z = 0 ) = | k = 0 K 1 S ( x , y , k ) e i ϕ ( x , y , k ) | ,

Metrics