Abstract

An optical resonator, designed for frequency doubling of cw single-frequency radiation, is simultaneously injected by two phase-coherent laser beams with the same frequency. By using standard methods in laser-cavity stabilization, we are able to stabilize the cavity length on resonance with the laser, as well as the relative phase of the fundamental beams, to fulfill the optimum coupling conditions simultaneously on the two input couplers. By using this method, we generate reliably more than 220mW of single-frequency radiation at 399nm using two 0.5W semiconductor tapered amplifiers at 798nm. This method can be generalized to a larger number of input couplers and holds promise for improving the performances of extreme-UV frequency combs.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Singer, M. Tscherneck, M. Eichhorn, M. Reetz-Lamour, S. Fölling, and M. Weidemüller, Opt. Commun. 218, 371(2003).
    [CrossRef]
  2. G. A. Kerr and J. Hough, Appl. Phys. B 49, 491 (1989).
    [CrossRef]
  3. M. Musha, T. Kanaya, K. Nakagawa, and K.-I. Ueda, Appl. Phys. B 73, 209 (2001).
  4. M. Fridman, V. Eckhouse, N. Davidson, and A. A. Friesem, Opt. Lett. 32, 790 (2007).
    [CrossRef] [PubMed]
  5. A. Shirakawa, T. Saitou, T. Sekiguchi, and K.-I. Ueda, Opt. Express 10, 1167 (2002).
    [PubMed]
  6. J. R. Leger, G. J. Swanson, and W. B. Veldkamp, Appl. Opt. 26, 4391 (1987).
    [CrossRef] [PubMed]
  7. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).
  8. A. Hemmerich, D. H. McIntyre, C. Zimmermann, and T. W. Hänsch, Opt. Lett. 15, 372 (1990).
    [CrossRef] [PubMed]
  9. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, Nature 436, 234 (2005).
    [CrossRef] [PubMed]
  10. R. J. Jones and J. Ye, Opt. Lett. 27, 1848 (2002).
    [CrossRef]
  11. T. Hänsch and B. Couillaud, Opt. Commun. 35, 441(1980).
    [CrossRef]
  12. F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tuennermann, Opt. Lett. 30, 2754 (2005).
    [CrossRef] [PubMed]

2007 (1)

2005 (2)

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, Nature 436, 234 (2005).
[CrossRef] [PubMed]

F. Röser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tuennermann, Opt. Lett. 30, 2754 (2005).
[CrossRef] [PubMed]

2003 (1)

K. Singer, M. Tscherneck, M. Eichhorn, M. Reetz-Lamour, S. Fölling, and M. Weidemüller, Opt. Commun. 218, 371(2003).
[CrossRef]

2002 (2)

2001 (1)

M. Musha, T. Kanaya, K. Nakagawa, and K.-I. Ueda, Appl. Phys. B 73, 209 (2001).

1990 (1)

1989 (1)

G. A. Kerr and J. Hough, Appl. Phys. B 49, 491 (1989).
[CrossRef]

1987 (1)

1980 (2)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

T. Hänsch and B. Couillaud, Opt. Commun. 35, 441(1980).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Couillaud, B.

T. Hänsch and B. Couillaud, Opt. Commun. 35, 441(1980).
[CrossRef]

Davidson, N.

Eckhouse, V.

Eichhorn, M.

K. Singer, M. Tscherneck, M. Eichhorn, M. Reetz-Lamour, S. Fölling, and M. Weidemüller, Opt. Commun. 218, 371(2003).
[CrossRef]

Fölling, S.

K. Singer, M. Tscherneck, M. Eichhorn, M. Reetz-Lamour, S. Fölling, and M. Weidemüller, Opt. Commun. 218, 371(2003).
[CrossRef]

Fridman, M.

Friesem, A. A.

Gohle, C.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, Nature 436, 234 (2005).
[CrossRef] [PubMed]

Hänsch, T.

T. Hänsch and B. Couillaud, Opt. Commun. 35, 441(1980).
[CrossRef]

Hänsch, T. W.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, Nature 436, 234 (2005).
[CrossRef] [PubMed]

A. Hemmerich, D. H. McIntyre, C. Zimmermann, and T. W. Hänsch, Opt. Lett. 15, 372 (1990).
[CrossRef] [PubMed]

Hemmerich, A.

Herrmann, M.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, Nature 436, 234 (2005).
[CrossRef] [PubMed]

Holzwarth, R.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, Nature 436, 234 (2005).
[CrossRef] [PubMed]

Hough, J.

G. A. Kerr and J. Hough, Appl. Phys. B 49, 491 (1989).
[CrossRef]

Jones, R. J.

Kanaya, T.

M. Musha, T. Kanaya, K. Nakagawa, and K.-I. Ueda, Appl. Phys. B 73, 209 (2001).

Kerr, G. A.

G. A. Kerr and J. Hough, Appl. Phys. B 49, 491 (1989).
[CrossRef]

Krausz, F.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, Nature 436, 234 (2005).
[CrossRef] [PubMed]

Leger, J. R.

Liem, A.

Limpert, J.

McIntyre, D. H.

Musha, M.

M. Musha, T. Kanaya, K. Nakagawa, and K.-I. Ueda, Appl. Phys. B 73, 209 (2001).

Nakagawa, K.

M. Musha, T. Kanaya, K. Nakagawa, and K.-I. Ueda, Appl. Phys. B 73, 209 (2001).

Ortac, B.

Rauschenberger, J.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, Nature 436, 234 (2005).
[CrossRef] [PubMed]

Reetz-Lamour, M.

K. Singer, M. Tscherneck, M. Eichhorn, M. Reetz-Lamour, S. Fölling, and M. Weidemüller, Opt. Commun. 218, 371(2003).
[CrossRef]

Röser, F.

Rothhard, J.

Saitou, T.

Schmidt, O.

Schreiber, T.

Schuessler, H. A.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, Nature 436, 234 (2005).
[CrossRef] [PubMed]

Sekiguchi, T.

Shirakawa, A.

Singer, K.

K. Singer, M. Tscherneck, M. Eichhorn, M. Reetz-Lamour, S. Fölling, and M. Weidemüller, Opt. Commun. 218, 371(2003).
[CrossRef]

Swanson, G. J.

Tscherneck, M.

K. Singer, M. Tscherneck, M. Eichhorn, M. Reetz-Lamour, S. Fölling, and M. Weidemüller, Opt. Commun. 218, 371(2003).
[CrossRef]

Tuennermann, A.

Udem, T.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, Nature 436, 234 (2005).
[CrossRef] [PubMed]

Ueda, K.-I.

A. Shirakawa, T. Saitou, T. Sekiguchi, and K.-I. Ueda, Opt. Express 10, 1167 (2002).
[PubMed]

M. Musha, T. Kanaya, K. Nakagawa, and K.-I. Ueda, Appl. Phys. B 73, 209 (2001).

Veldkamp, W. B.

Weidemüller, M.

K. Singer, M. Tscherneck, M. Eichhorn, M. Reetz-Lamour, S. Fölling, and M. Weidemüller, Opt. Commun. 218, 371(2003).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Ye, J.

Zimmermann, C.

Appl. Opt. (1)

Appl. Phys. B (2)

G. A. Kerr and J. Hough, Appl. Phys. B 49, 491 (1989).
[CrossRef]

M. Musha, T. Kanaya, K. Nakagawa, and K.-I. Ueda, Appl. Phys. B 73, 209 (2001).

Nature (1)

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, Nature 436, 234 (2005).
[CrossRef] [PubMed]

Opt. Commun. (2)

K. Singer, M. Tscherneck, M. Eichhorn, M. Reetz-Lamour, S. Fölling, and M. Weidemüller, Opt. Commun. 218, 371(2003).
[CrossRef]

T. Hänsch and B. Couillaud, Opt. Commun. 35, 441(1980).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Other (1)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sketch of the frequency doubler unit based on a doubly injected resonator. ECDL, extended-cavity diode laser; TA1 and TA2, semiconductor tapered amplifiers; OI, optical isolators; IC1 and IC2, ring-cavity input couplers; OC, second-harmonic output coupler; PZT1, adjustable cavity length mirror; PZT2, mirror adjusting the TA1-TA2 relative phase ϕ; D1 and D2, polarization correction signal detectors to control PZT1 and PZT2.

Fig. 2
Fig. 2

Behavior of the doubly injected cavity when the relative phase of the two injecting beams is varied on discrete positions over one period ( π / 4 step increment). All the parameters are monitored under a linear sweep of the cavity. Top to bottom, intensity of the IR reflected power from IC1, error signal measured on D1, intensity of the IR reflected power from IC2, error signal measured on D2, IR power circulating within the cavity, and SHG power. The IR power circulating within the cavity is measured from the residual IR transmission of the PZT1 mirror. All vertical scales are given in arbitrary units.

Fig. 3
Fig. 3

Amplitude stability of the SHG field generated by a doubly injected cavity on long (a) and short (b) time scales. On short time scales, the 4% RMS amplitude fluctuations result from the laser/cavity-mode relative frequency jitter induced by acoustic noise. Inset c, frequency sweep of violet laser across the S 0 1 P 1 1 resonances of ytterbium atoms.

Fig. 4
Fig. 4

SHG power as a function of the IR power provided by TA1 and TA2 separately. Inset, SHG power as a function of the overall IR power incident on the frequency doubler. Squares, the ratio of the IR power from TA1 and TA2 is equal to 1. Circles, the power from TA1 is kept constant at 0.5 W . Triangles, the power from TA2 is kept constant at 0.54 W .

Metrics