Abstract

Three-wave nonlinear interactions in chirped quasi-phase-matched (QPM) gratings are shown to exhibit conversion efficiency approaching 100% with increasing input pump and signal intensities, evading backconversion, as long as the idler vanishes at the input and the QPM grating is sufficiently chirped. The signal phase is described in terms of Kerr-like self- and cross-phase modulations, in the cascade χ(3) approximation. Achieving high gain and efficiency simultaneously can lead to a large nonlinear phase, and the resulting trade-off is discussed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, J. Opt. Soc. Am. B 25, 1402 (2008).
    [CrossRef]
  2. G. Imeshev, M. M. Fejer, A. Galvanauskas, and D. Harter, J. Opt. Soc. Am. B 18, 534 (2001).
    [CrossRef]
  3. H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, Opt. Express 17, 12731 (2009).
    [CrossRef] [PubMed]
  4. L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J. Meyn, Opt. Lett. 26, 614 (2001).
    [CrossRef]
  5. M. Charbonneau-Lefort, M. M. Fejer, and B. Afeyan, Opt. Lett. 30, 634 (2005).
    [CrossRef] [PubMed]
  6. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, J. Opt. Soc. Am. B 25, 463 (2008).
    [CrossRef]
  7. M. D. Crisp, Phys. Rev. A 8, 2128 (1973).
    [CrossRef]
  8. G. Luther, M. Alber, J. Marsden, and J. Robbins, J. Opt. Soc. Am. B 17, 932 (2000).
    [CrossRef]
  9. J. Huang, X. Xie, C. Langrock, R. Roussev, D. Hum, and M. M. Fejer, Opt. Lett. 31, 604 (2006).
    [CrossRef] [PubMed]
  10. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001).
    [CrossRef] [PubMed]
  11. N. V. Vitanov, Phys. Rev. A 59, 988 (1999).
    [CrossRef]
  12. C. Conti, S. Trillo, P. Di Trapani, J. Kilius, A. Bramati, S. Minardi, W. Chinaglia, and G. Valiulis, J. Opt. Soc. Am. B 19, 852 (2002).
    [CrossRef]

2009 (1)

2008 (2)

2006 (1)

2005 (1)

2002 (1)

2001 (3)

2000 (1)

1999 (1)

N. V. Vitanov, Phys. Rev. A 59, 988 (1999).
[CrossRef]

1973 (1)

M. D. Crisp, Phys. Rev. A 8, 2128 (1973).
[CrossRef]

Afeyan, B.

Alber, M.

Arie, A.

Bergmann, K.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001).
[CrossRef] [PubMed]

Bramati, A.

Charbonneau-Lefort, M.

Chinaglia, W.

Conti, C.

Crisp, M. D.

M. D. Crisp, Phys. Rev. A 8, 2128 (1973).
[CrossRef]

Di Trapani, P.

Fejer, M. M.

Gallmann, L.

Galvanauskas, A.

Halfmann, T.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001).
[CrossRef] [PubMed]

Harter, D.

Huang, J.

Hum, D.

Imeshev, G.

Keller, U.

Kilius, J.

Langrock, C.

Luther, G.

Marsden, J.

Meyn, J.

Minardi, S.

Oron, D.

Prabhudesai, V.

Robbins, J.

Roussev, R.

Shore, B. W.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001).
[CrossRef] [PubMed]

Silberberg, Y.

Steinmeyer, G.

Suchowski, H.

Trillo, S.

Valiulis, G.

Vitanov, N. V.

N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Annu. Rev. Phys. Chem. 52, 763 (2001).
[CrossRef] [PubMed]

N. V. Vitanov, Phys. Rev. A 59, 988 (1999).
[CrossRef]

Xie, X.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Pump depletion in an apodized QPM grating, with undepleted-pump gain set by λ R , p = 2 and phase-matched point z pm = L / 2 , at increasing signal–pump-photon-flux ratio ρ.

Fig. 2
Fig. 2

Transmitted pump η as a function of λ R , p and ρ, with z pm = L / 2 and using κ L = 45 so that L 2 L deph for all values of λ R , p simulated. Contours are labeled with values of η.

Fig. 3
Fig. 3

Signal phase accumulation during propagation with λ R , p = 2 and z pm = L / 2 at increasing signal-to-pump-photon-flux ratio ρ, obtained with numerical solution of Eqs. (1). The dotted and dashed curves are approximations to the phase, based on Eqs. (2), with a j ( 0 ) ( 0 ) = a j ( 0 ) and a j ( 0 ) ( ζ L ) = a j ( ζ L ) .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

a ˙ i i δ k ( ζ ) a i = i g ( ζ ) a s * a p , a ˙ s i δ k ( ζ ) a s = i g ( ζ ) a i * a p , a ˙ p i δ k ( ζ ) a p = i g ( ζ ) a i a s ,
a ˙ i ( 0 ) i δ k ( ζ ) a i ( 0 ) = i δ k ( ζ ) 1 [ a p ( 0 ) 2 a s ( 0 ) 2 ] a i ( 0 ) , a ˙ s ( 0 ) i δ k ( ζ ) a s ( 0 ) = i δ k ( ζ ) 1 [ a p ( 0 ) 2 a i ( 0 ) 2 ] a s ( 0 ) , a ˙ p ( 0 ) i δ k ( ζ ) a p ( 0 ) = i δ k ( ζ ) 1 [ a i ( 0 ) 2 + a s ( 0 ) 2 ] a p ( 0 ) .

Metrics