Abstract

We report, for the first time to our knowledge, femtosecond-pulse operation of a Tm,Ho:NaY(WO4)2 laser at around 2060nm. Transform-limited 191fs pulses are produced with an average output power of 82mW at a 144MHz pulse repetition frequency. Maximum output power of up to 155mW is generated with a corresponding pulse duration of 258fs. An ion-implanted InGaAsSb quantum-well-based semiconductor saturable absorber mirror is used for passive mode-locking maintenance.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996).
    [CrossRef]
  2. E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2010), paper AMC2.
  3. M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, Opt. Lett. 34, 3056 (2009).
    [CrossRef] [PubMed]
  4. L. E. Nelson, E. P. Ippen, and H. A. Haus, Appl. Phys. Lett. 67, 19 (1995).
    [CrossRef]
  5. R. C. Sharp, D. E. Spock, N. Pan, and J. Elliot, Opt. Lett. 21, 881 (1996).
    [CrossRef] [PubMed]
  6. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, Opt. Express 17, 2358 (2009).
    [CrossRef] [PubMed]
  7. K. Kieu and F. W. Wise, IEEE Photon. Technol. Lett. 21, 128 (2009).
    [CrossRef]
  8. M. Engelbrecht, F. Haxsen, A. Ruehl, D. Wandt, and D. Kracht, Opt. Lett. 33, 690 (2008).
    [CrossRef] [PubMed]
  9. W. B. Cho, A. Schmidt, J. H. Yim, S. Y. Choi, S. Lee, F. Rotermund, U. Griebner, G. Steinmeyer, V. Petrov, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, and F. Díaz, Opt. Express 17, 11007 (2009).
    [CrossRef] [PubMed]
  10. K. L. Vodopyanov, R. Shori, and O. M. Stafsudd, Appl. Phys. Lett. 72, 2211 (1998).
    [CrossRef]
  11. A. A. Lagatsky, F. Fusari, S. Calvez, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, M. D. Dawson, C. T. A. Brown, and W. Sibbett, Opt. Lett. 35, 172 (2010).
    [CrossRef] [PubMed]
  12. X. Han, A. García-Cortés, M. D. Serrano, C. Zaldo, and C. Cascales, Chem. Mater. 19, 3002 (2007).
    [CrossRef]
  13. E. Zharikov, C. Zaldo, and F. Díaz, MRS Bull. 34, 271 (2009).
    [CrossRef]
  14. X. Han, F. Fusari, M. D. Serrano, A. A. Lagatsky, J. M. Cano-Torres, C. T. A. Brown, C. Zaldo, and W. Sibbett, Opt. Express 18, 5413 (2010).
    [CrossRef] [PubMed]
  15. F. X. Kartner, I. D. Jung, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 2, 540 (1996).
    [CrossRef]
  16. H. A. Haus, IEEE J. Quantum Electron. 6, 1173 (2000).
    [CrossRef]

2010 (3)

2009 (5)

2008 (1)

2007 (1)

X. Han, A. García-Cortés, M. D. Serrano, C. Zaldo, and C. Cascales, Chem. Mater. 19, 3002 (2007).
[CrossRef]

2000 (1)

H. A. Haus, IEEE J. Quantum Electron. 6, 1173 (2000).
[CrossRef]

1998 (1)

K. L. Vodopyanov, R. Shori, and O. M. Stafsudd, Appl. Phys. Lett. 72, 2211 (1998).
[CrossRef]

1996 (3)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996).
[CrossRef]

R. C. Sharp, D. E. Spock, N. Pan, and J. Elliot, Opt. Lett. 21, 881 (1996).
[CrossRef] [PubMed]

F. X. Kartner, I. D. Jung, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 2, 540 (1996).
[CrossRef]

1995 (1)

L. E. Nelson, E. P. Ippen, and H. A. Haus, Appl. Phys. Lett. 67, 19 (1995).
[CrossRef]

Aguiló, M.

Aitchison, B.

Brown, C. T. A.

Brown, D. P.

Calvez, S.

Cankaya, H.

Cano-Torres, J. M.

Carvajal, J. J.

Cascales, C.

X. Han, A. García-Cortés, M. D. Serrano, C. Zaldo, and C. Cascales, Chem. Mater. 19, 3002 (2007).
[CrossRef]

Cho, W. B.

Choi, S. Y.

Cizmeciyan, M. N.

Dawson, M. D.

DeLoach, L. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996).
[CrossRef]

Díaz, F.

Elliot, J.

Engelbrecht, M.

Fedorov, V. V.

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2010), paper AMC2.

Fusari, F.

García-Cortés, A.

X. Han, A. García-Cortés, M. D. Serrano, C. Zaldo, and C. Cascales, Chem. Mater. 19, 3002 (2007).
[CrossRef]

Griebner, U.

Hakulinen, T.

Han, X.

Härkönen, A.

Haus, H. A.

H. A. Haus, IEEE J. Quantum Electron. 6, 1173 (2000).
[CrossRef]

L. E. Nelson, E. P. Ippen, and H. A. Haus, Appl. Phys. Lett. 67, 19 (1995).
[CrossRef]

Haxsen, F.

Ippen, E. P.

L. E. Nelson, E. P. Ippen, and H. A. Haus, Appl. Phys. Lett. 67, 19 (1995).
[CrossRef]

Jung, I. D.

F. X. Kartner, I. D. Jung, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 2, 540 (1996).
[CrossRef]

Kartner, F. X.

F. X. Kartner, I. D. Jung, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 2, 540 (1996).
[CrossRef]

Kaskela, A.

Kauppinen, E. I.

Keller, U.

F. X. Kartner, I. D. Jung, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 2, 540 (1996).
[CrossRef]

Kieu, K.

K. Kieu and F. W. Wise, IEEE Photon. Technol. Lett. 21, 128 (2009).
[CrossRef]

Kisel, V. E.

Kivistö, S.

Kracht, D.

Krupke, W. F.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996).
[CrossRef]

Kuleshov, N. V.

Kurilchik, S. V.

Kurt, A.

Lagatsky, A. A.

Lee, S.

Mateos, X.

Mirov, M. S.

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2010), paper AMC2.

Mirov, S. B.

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2010), paper AMC2.

Moskalev, I. S.

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2010), paper AMC2.

Nasibulin, A. G.

Nelson, L. E.

L. E. Nelson, E. P. Ippen, and H. A. Haus, Appl. Phys. Lett. 67, 19 (1995).
[CrossRef]

Okhotnikov, O. G.

Page, R. H.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996).
[CrossRef]

Pan, N.

Payne, S. A.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996).
[CrossRef]

Petrov, V.

Pujol, M. C.

Rotermund, F.

Ruehl, A.

Schmidt, A.

Sennaroglu, A.

Serrano, M. D.

Sharp, R. C.

Shori, R.

K. L. Vodopyanov, R. Shori, and O. M. Stafsudd, Appl. Phys. Lett. 72, 2211 (1998).
[CrossRef]

Sibbett, W.

Sorokin, E.

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2010), paper AMC2.

Sorokina, I. T.

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2010), paper AMC2.

Spock, D. E.

Stafsudd, O. M.

K. L. Vodopyanov, R. Shori, and O. M. Stafsudd, Appl. Phys. Lett. 72, 2211 (1998).
[CrossRef]

Steinmeyer, G.

Vodopyanov, K. L.

K. L. Vodopyanov, R. Shori, and O. M. Stafsudd, Appl. Phys. Lett. 72, 2211 (1998).
[CrossRef]

Wandt, D.

Wilke, G. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996).
[CrossRef]

Wise, F. W.

K. Kieu and F. W. Wise, IEEE Photon. Technol. Lett. 21, 128 (2009).
[CrossRef]

Yim, J. H.

Zaldo, C.

X. Han, F. Fusari, M. D. Serrano, A. A. Lagatsky, J. M. Cano-Torres, C. T. A. Brown, C. Zaldo, and W. Sibbett, Opt. Express 18, 5413 (2010).
[CrossRef] [PubMed]

E. Zharikov, C. Zaldo, and F. Díaz, MRS Bull. 34, 271 (2009).
[CrossRef]

X. Han, A. García-Cortés, M. D. Serrano, C. Zaldo, and C. Cascales, Chem. Mater. 19, 3002 (2007).
[CrossRef]

Zharikov, E.

E. Zharikov, C. Zaldo, and F. Díaz, MRS Bull. 34, 271 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

L. E. Nelson, E. P. Ippen, and H. A. Haus, Appl. Phys. Lett. 67, 19 (1995).
[CrossRef]

K. L. Vodopyanov, R. Shori, and O. M. Stafsudd, Appl. Phys. Lett. 72, 2211 (1998).
[CrossRef]

Chem. Mater. (1)

X. Han, A. García-Cortés, M. D. Serrano, C. Zaldo, and C. Cascales, Chem. Mater. 19, 3002 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. A. Haus, IEEE J. Quantum Electron. 6, 1173 (2000).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, IEEE J. Quantum Electron. 32, 885 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

F. X. Kartner, I. D. Jung, and U. Keller, IEEE J. Sel. Top. Quantum Electron. 2, 540 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Kieu and F. W. Wise, IEEE Photon. Technol. Lett. 21, 128 (2009).
[CrossRef]

MRS Bull. (1)

E. Zharikov, C. Zaldo, and F. Díaz, MRS Bull. 34, 271 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Other (1)

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, in Advanced Solid-State Photonics, OSA Technical Digest Series (Optical Society of America, 2010), paper AMC2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the Tm,Ho:NaYW mode-locked laser: FL, focusing lens ( f = 63 mm ); M 1 and M 2 , plano–concave high-reflective mirrors ( r 1 = 75 mm , r 2 = 100 mm ); OC, output coupler ( T = 1 % at 2000 nm ); FS, pair of fused silica prisms.

Fig. 2
Fig. 2

Input–output characteristics of the mode-locked Tm,Ho:NaYW laser. Two different operation regimes, shorter-pulse and higher-power, are indicated by squares and circles, respectively. Q-switching and mode- locking regimes are represented by open and closed symbols, respectively.

Fig. 3
Fig. 3

Dependence of pulse duration on the intracavity pulse energy for the two mode-locking regimes. The red curves are fits to 1 / E p . δ is the SPM coefficient [15, 16].

Fig. 4
Fig. 4

Output mode-locking parameters of the Tm,Ho:NaYW laser. (a) Intensity autocorrelation of 191 fs and 258 fs pulses and (b) corresponding optical spectra. The dashed red curve in (b) is the luminescence spectrum of Tm,Ho:NaYW at around 2060 nm .

Metrics