Abstract

Access to the spatial derivatives of an optical wave field can be used to enhance edge detection, focusing, and holographic imaging. It was recently shown that, by using digital holographic techniques, the Laplacian of an object field can be extracted. Here it is demonstrated that equivalent results can be found using two holograms captured at either two distances or with two appropriately related wavelengths. Experimental and numerical results confirming the theoretical analyses are presented. The proposed two-wavelength-based system requires no mechanical repositioning of the object and is shown to provide superior performance.

© 2010 Optical Society of America

Full Article  |  PDF Article
Related Articles
Computational Reconstruction of Images from Holograms

Jerome H. Milgram and Weichang Li
Appl. Opt. 41(5) 853-864 (2002)

Improved-resolution digital holography using the generalized sampling theorem for locally band-limited fields

Adrian Stern and Bahram Javidi
J. Opt. Soc. Am. A 23(5) 1227-1235 (2006)

Generalized in-line digital holographic technique based on intensity measurements at two different planes

Guohai Situ, James P. Ryle, Unnikrishnan Gopinathan, and John T. Sheridan
Appl. Opt. 47(5) 711-717 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription