Abstract

Crystalline fiberlike diode-pumped laser systems offer a convenient way to obtain compact, robust, and efficient operation whenever long active media are required. One of these cases is the diode-pumped Er3+:YAG laser emitting at 1.6μm, where long crystals are needed to avoid the upconversion processes. By resonantly pumping the I13/24 level around 1.53μm, and by confining the pump radiation into the crystal by total internal reflection, a maximum output power of 14.5W in cw mode is reached when pumped with ~40 W of absorbed power. In Q-switching mode, pulse energies of more than 8mJ were obtained at a repetition rate of 90Hz, limited by coating damage.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett. 86, 131115 (2005).
    [CrossRef]
  2. S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
    [CrossRef]
  3. M. Eichhorn, Appl. Phys. B 93, 269 (2008).
    [CrossRef]
  4. J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, J. Opt. Soc. Am. B 24, 2454 (2007).
    [CrossRef]
  5. J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, Opt. Express 17, 11935 (2009).
    [CrossRef] [PubMed]
  6. N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, Opt. Express 18, 13673 (2010).
    [CrossRef] [PubMed]
  7. Y. E. Young, S. D. Setzler, K. J. Snell, P. A. Budni, T. M. Pollak, and E. P. Chicklis, Opt. Lett. 29, 1075 (2004).
    [CrossRef] [PubMed]
  8. K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
    [CrossRef]
  9. I. S. Moskalev, V. V. Fedorov, V. P. Gapontsev, D. V. Gapontsev, N. S. Platonov, and S. B. Mirov, Opt. Express 16, 19427 (2008).
    [CrossRef] [PubMed]
  10. J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
    [CrossRef]
  11. M. Eichhorn, Appl. Phys. B 93, 773 (2008).
    [CrossRef]
  12. M. Eichhorn, Appl. Phys. B 94, 451 (2009).
    [CrossRef]
  13. M. Eichhorn, Appl. Opt. 47, 3129 (2008).
    [CrossRef] [PubMed]
  14. M. Eichhorn, Appl. Phys. B 96, 369 (2009).
    [CrossRef]

2010 (1)

2009 (4)

J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, Opt. Express 17, 11935 (2009).
[CrossRef] [PubMed]

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
[CrossRef]

M. Eichhorn, Appl. Phys. B 94, 451 (2009).
[CrossRef]

M. Eichhorn, Appl. Phys. B 96, 369 (2009).
[CrossRef]

2008 (4)

2007 (1)

2006 (1)

K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
[CrossRef]

2005 (2)

D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett. 86, 131115 (2005).
[CrossRef]

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

2004 (1)

Budni, P. A.

Chang, N. W. H.

Chicklis, E.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Chicklis, E. P.

Clarkson, W. A.

J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, Opt. Express 17, 11935 (2009).
[CrossRef] [PubMed]

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
[CrossRef]

Dubinskii, M.

Eichhorn, M.

M. Eichhorn, Appl. Phys. B 94, 451 (2009).
[CrossRef]

M. Eichhorn, Appl. Phys. B 96, 369 (2009).
[CrossRef]

M. Eichhorn, Appl. Opt. 47, 3129 (2008).
[CrossRef] [PubMed]

M. Eichhorn, Appl. Phys. B 93, 773 (2008).
[CrossRef]

M. Eichhorn, Appl. Phys. B 93, 269 (2008).
[CrossRef]

Fedorov, V. V.

Francis, M.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Gapontsev, D. V.

Gapontsev, V. P.

Garbuzov, D.

Hosken, D. J.

Kim, J. W.

J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, Opt. Express 17, 11935 (2009).
[CrossRef] [PubMed]

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
[CrossRef]

Klotz, M.

K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
[CrossRef]

Konves, J.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Kudryashov, I.

Leyva, V.

K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
[CrossRef]

Mackenzie, J. I.

Merkle, L. D.

Mirov, S. B.

Moskalev, I. S.

Munch, J.

Ottaway, D. J.

Platonov, N. S.

Pollak, T. M.

Reeder, R.

K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
[CrossRef]

Sahu, J. K.

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
[CrossRef]

Setzler, S.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Setzler, S. D.

Shen, D. Y.

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
[CrossRef]

Simakov, N.

Snell, K. J.

Spariosu, K.

K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
[CrossRef]

Veitch, P. J.

White, J. O.

Young, Y.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Young, Y. E.

Appl. Opt. (1)

Appl. Phys. B (4)

M. Eichhorn, Appl. Phys. B 96, 369 (2009).
[CrossRef]

M. Eichhorn, Appl. Phys. B 93, 773 (2008).
[CrossRef]

M. Eichhorn, Appl. Phys. B 94, 451 (2009).
[CrossRef]

M. Eichhorn, Appl. Phys. B 93, 269 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett. 86, 131115 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup used.

Fig. 2
Fig. 2

Continuous wave output power versus incident absorbed power for different OC reflectivities. The curve represented by the star symbol has been observed using a cavity different from that depicted in Figure 1 (see text).

Fig. 3
Fig. 3

Mean beam-propagation factor and profile as a function of the absorbed pump power in cw mode.

Fig. 4
Fig. 4

Q-switched energy pulses as function of the repetition rate for an absorbed pump power of 30 W . Inset, pulse width recorded at 100 (left) and 200 Hz (right) repetition rate.

Fig. 5
Fig. 5

Average power (triangles) and pulse width (circles) as a function of repetition rate. The pulse widths have been recorded using an InGaAs photodiode (black circles) and a fast pyroelectric detector, having a response time of < 1 ns (open circles).

Metrics