Abstract

Crystalline fiberlike diode-pumped laser systems offer a convenient way to obtain compact, robust, and efficient operation whenever long active media are required. One of these cases is the diode-pumped Er3+:YAG laser emitting at 1.6μm, where long crystals are needed to avoid the upconversion processes. By resonantly pumping the I13/24 level around 1.53μm, and by confining the pump radiation into the crystal by total internal reflection, a maximum output power of 14.5W in cw mode is reached when pumped with ~40 W of absorbed power. In Q-switching mode, pulse energies of more than 8mJ were obtained at a repetition rate of 90Hz, limited by coating damage.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett. 86, 131115 (2005).
    [CrossRef]
  2. S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
    [CrossRef]
  3. M. Eichhorn, Appl. Phys. B 93, 269 (2008).
    [CrossRef]
  4. J. O. White, M. Dubinskii, L. D. Merkle, I. Kudryashov, and D. Garbuzov, J. Opt. Soc. Am. B 24, 2454 (2007).
    [CrossRef]
  5. J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, Opt. Express 17, 11935 (2009).
    [CrossRef] [PubMed]
  6. N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, Opt. Express 18, 13673 (2010).
    [CrossRef] [PubMed]
  7. Y. E. Young, S. D. Setzler, K. J. Snell, P. A. Budni, T. M. Pollak, and E. P. Chicklis, Opt. Lett. 29, 1075 (2004).
    [CrossRef] [PubMed]
  8. K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
    [CrossRef]
  9. I. S. Moskalev, V. V. Fedorov, V. P. Gapontsev, D. V. Gapontsev, N. S. Platonov, and S. B. Mirov, Opt. Express 16, 19427 (2008).
    [CrossRef] [PubMed]
  10. J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
    [CrossRef]
  11. M. Eichhorn, Appl. Phys. B 93, 773 (2008).
    [CrossRef]
  12. M. Eichhorn, Appl. Phys. B 94, 451 (2009).
    [CrossRef]
  13. M. Eichhorn, Appl. Opt. 47, 3129 (2008).
    [CrossRef] [PubMed]
  14. M. Eichhorn, Appl. Phys. B 96, 369 (2009).
    [CrossRef]

2010

2009

J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, Opt. Express 17, 11935 (2009).
[CrossRef] [PubMed]

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
[CrossRef]

M. Eichhorn, Appl. Phys. B 94, 451 (2009).
[CrossRef]

M. Eichhorn, Appl. Phys. B 96, 369 (2009).
[CrossRef]

2008

2007

2006

K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
[CrossRef]

2005

D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett. 86, 131115 (2005).
[CrossRef]

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

2004

Budni, P. A.

Chang, N. W. H.

Chicklis, E.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Chicklis, E. P.

Clarkson, W. A.

J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, Opt. Express 17, 11935 (2009).
[CrossRef] [PubMed]

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
[CrossRef]

Dubinskii, M.

Eichhorn, M.

M. Eichhorn, Appl. Phys. B 94, 451 (2009).
[CrossRef]

M. Eichhorn, Appl. Phys. B 96, 369 (2009).
[CrossRef]

M. Eichhorn, Appl. Opt. 47, 3129 (2008).
[CrossRef] [PubMed]

M. Eichhorn, Appl. Phys. B 93, 773 (2008).
[CrossRef]

M. Eichhorn, Appl. Phys. B 93, 269 (2008).
[CrossRef]

Fedorov, V. V.

Francis, M.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Gapontsev, D. V.

Gapontsev, V. P.

Garbuzov, D.

Hosken, D. J.

Kim, J. W.

J. W. Kim, J. I. Mackenzie, and W. A. Clarkson, Opt. Express 17, 11935 (2009).
[CrossRef] [PubMed]

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
[CrossRef]

Klotz, M.

K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
[CrossRef]

Konves, J.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Kudryashov, I.

Leyva, V.

K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
[CrossRef]

Mackenzie, J. I.

Merkle, L. D.

Mirov, S. B.

Moskalev, I. S.

Munch, J.

Ottaway, D. J.

Platonov, N. S.

Pollak, T. M.

Reeder, R.

K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
[CrossRef]

Sahu, J. K.

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
[CrossRef]

Setzler, S.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Setzler, S. D.

Shen, D. Y.

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
[CrossRef]

Simakov, N.

Snell, K. J.

Spariosu, K.

K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
[CrossRef]

Veitch, P. J.

White, J. O.

Young, Y.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

Young, Y. E.

Appl. Opt.

Appl. Phys. B

M. Eichhorn, Appl. Phys. B 96, 369 (2009).
[CrossRef]

M. Eichhorn, Appl. Phys. B 93, 773 (2008).
[CrossRef]

M. Eichhorn, Appl. Phys. B 94, 451 (2009).
[CrossRef]

M. Eichhorn, Appl. Phys. B 93, 269 (2008).
[CrossRef]

Appl. Phys. Lett.

D. Garbuzov, I. Kudryashov, and M. Dubinskii, Appl. Phys. Lett. 86, 131115 (2005).
[CrossRef]

IEEE J. Quantum Electron.

K. Spariosu, V. Leyva, R. Reeder, and M. Klotz, IEEE J. Quantum Electron. 42, 182 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. Setzler, M. Francis, Y. Young, J. Konves, and E. Chicklis, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005).
[CrossRef]

J. W. Kim, D. Y. Shen, J. K. Sahu, and W. A. Clarkson, IEEE J. Sel. Top. Quantum Electron. 15, 361 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup used.

Fig. 2
Fig. 2

Continuous wave output power versus incident absorbed power for different OC reflectivities. The curve represented by the star symbol has been observed using a cavity different from that depicted in Figure 1 (see text).

Fig. 3
Fig. 3

Mean beam-propagation factor and profile as a function of the absorbed pump power in cw mode.

Fig. 4
Fig. 4

Q-switched energy pulses as function of the repetition rate for an absorbed pump power of 30 W . Inset, pulse width recorded at 100 (left) and 200 Hz (right) repetition rate.

Fig. 5
Fig. 5

Average power (triangles) and pulse width (circles) as a function of repetition rate. The pulse widths have been recorded using an InGaAs photodiode (black circles) and a fast pyroelectric detector, having a response time of < 1 ns (open circles).

Metrics