Abstract

The linear-to-elliptical transformation of a 400nm femtosecond-probe pulse in the birefringent filament in argon of an 800nm linearly polarized femtosecond-pump pulse is studied numerically and experimentally. The rotation of the probe elliptical polarization is the largest in the high-intensity filament core. With propagation, the rotated radiation diffracts outward by the pump-produced plasma. The transmission of the analyzer crossing the probe’s polarization is maximum at the pump–probe angle of 45° and gives equal values for each pair of angles symmetrically situated at both sides of the maximum.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
    [CrossRef]
  2. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  3. M. Kolesik, J. V. Moloney, and E. M. Wright, Phys. Rev. E 64, 046607 (2001).
    [CrossRef]
  4. P. Béjot, Y. Petit, L. Bonacina, J. Kasparian, M. Moret, and J.-P. Wolf, Opt. Express 16, 7564 (2008).
    [CrossRef] [PubMed]
  5. Y. Chen, C. Marceau, F. Théberge, M. Châteauneuf, J. Dubois, and S. L. Chin, Opt. Lett. 33, 2731 (2008).
    [CrossRef] [PubMed]
  6. C. Marceau, Y. Chen, F. Théberge, M. Châteauneuf, J. Dubois, and S. L. Chin, Opt. Lett. 34, 1417 (2009).
    [CrossRef] [PubMed]
  7. R. W. Hellwarth, D. M. Pennington, and M. A. Henesian, Phys. Rev. A 41, 2766 (1990).
    [CrossRef] [PubMed]
  8. A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Sov. Phys. JETP 23, 924 (1966).
  9. J. Bernhardt, W. Liu, S. L. Chin, and R. Sauerbrey, Appl. Phys. B 91, 45 (2008).
    [CrossRef]

2009 (1)

2008 (3)

2007 (1)

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[CrossRef]

2001 (1)

M. Kolesik, J. V. Moloney, and E. M. Wright, Phys. Rev. E 64, 046607 (2001).
[CrossRef]

1990 (1)

R. W. Hellwarth, D. M. Pennington, and M. A. Henesian, Phys. Rev. A 41, 2766 (1990).
[CrossRef] [PubMed]

1966 (1)

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Sov. Phys. JETP 23, 924 (1966).

Béjot, P.

Bernhardt, J.

J. Bernhardt, W. Liu, S. L. Chin, and R. Sauerbrey, Appl. Phys. B 91, 45 (2008).
[CrossRef]

Bonacina, L.

Châteauneuf, M.

Chen, Y.

Chin, S. L.

Couairon, A.

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[CrossRef]

Dubois, J.

Hellwarth, R. W.

R. W. Hellwarth, D. M. Pennington, and M. A. Henesian, Phys. Rev. A 41, 2766 (1990).
[CrossRef] [PubMed]

Henesian, M. A.

R. W. Hellwarth, D. M. Pennington, and M. A. Henesian, Phys. Rev. A 41, 2766 (1990).
[CrossRef] [PubMed]

Kasparian, J.

Kolesik, M.

M. Kolesik, J. V. Moloney, and E. M. Wright, Phys. Rev. E 64, 046607 (2001).
[CrossRef]

Liu, W.

J. Bernhardt, W. Liu, S. L. Chin, and R. Sauerbrey, Appl. Phys. B 91, 45 (2008).
[CrossRef]

Marceau, C.

Moloney, J. V.

M. Kolesik, J. V. Moloney, and E. M. Wright, Phys. Rev. E 64, 046607 (2001).
[CrossRef]

Moret, M.

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[CrossRef]

Pennington, D. M.

R. W. Hellwarth, D. M. Pennington, and M. A. Henesian, Phys. Rev. A 41, 2766 (1990).
[CrossRef] [PubMed]

Perelomov, A. M.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Sov. Phys. JETP 23, 924 (1966).

Petit, Y.

Popov, V. S.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Sov. Phys. JETP 23, 924 (1966).

Sauerbrey, R.

J. Bernhardt, W. Liu, S. L. Chin, and R. Sauerbrey, Appl. Phys. B 91, 45 (2008).
[CrossRef]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Terent’ev, M. V.

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Sov. Phys. JETP 23, 924 (1966).

Théberge, F.

Wolf, J.-P.

Wright, E. M.

M. Kolesik, J. V. Moloney, and E. M. Wright, Phys. Rev. E 64, 046607 (2001).
[CrossRef]

Appl. Phys. B (1)

J. Bernhardt, W. Liu, S. L. Chin, and R. Sauerbrey, Appl. Phys. B 91, 45 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).
[CrossRef]

Phys. Rev. A (1)

R. W. Hellwarth, D. M. Pennington, and M. A. Henesian, Phys. Rev. A 41, 2766 (1990).
[CrossRef] [PubMed]

Phys. Rev. E (1)

M. Kolesik, J. V. Moloney, and E. M. Wright, Phys. Rev. E 64, 046607 (2001).
[CrossRef]

Sov. Phys. JETP (1)

A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Sov. Phys. JETP 23, 924 (1966).

Other (1)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a), (b) Simulated fluences and (c) peak intensity of the pump and the probe pulses copropagating in 1 bar argon. The initial pump-probe angle is ψ = 45 ° and the pump direction is 0 ° . Dashed vertical lines in (c) indicate the positions z = 40 , 55, 85, 112 cm , where the polarization is analyzed in (d)–(g) and (h)–(k) (each of the four columns corresponds to one z position). (d)–(g) Probe fluence (solid curve) in the beam center (radius 100 μm , the upper row) or the periphery ring ( 320 370 μm , the lower row). The dashed line is the probe polarization direction at z = 0 . (h)–(k) Ellipses at several radial positions across the beam plotted over the transverse fluence distribution.

Fig. 2
Fig. 2

The pump fluence in (a) 1 bar or (b) 3 bars argon. Ellipses show the change of the probe polarization in the beam center along the z axis. See the text for the marks “1a”–“2b” description. (c) Maximum rotation angle over the filament (stars); the rotation angle increase with the pressure at z = 20 cm (squares). (d) Inset, the rotation angle definition. Symbols, variation of the rotation angle across the beam cross section at the end of the filament. For all panels the pump–probe angle ψ = 45 ° and the pump’s direction is 0 ° .

Fig. 3
Fig. 3

(a) The experimentally obtained (starred curve) and simulated (dashed curve) energy of the overall probe beam transmitted by the crossed analyzer at the end of the filament for the pairs of pump–probe angles ψ = ( α ; 90 ° α ) . The probe energy (hatches) in the beam center as a percentage of the total probe energy. (b) Primed coordinate system. The pump–probe angle ψ is varied by changing the direction of the pump and fixing the probe perpendicular to the analyzer’s transmission axis.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2 i k ω z E ω ± = Δ E ω ± k ω k ω τ τ 2 E ω ± + 2 k ω 2 Δ n ω ± E ω ± + 2 k ω 2 δ n ω ± E ω i k ω α ω E ω ± ,
2 i k 2 ω z E 2 ω ± = Δ E 2 ω ± 2 i k 2 ω δ v 1 τ E ω ± k 2 ω k 2 ω τ τ 2 E 2 ω ± + 2 k 2 ω 2 Δ n 2 ω ± E 2 ω ± + 2 k 2 ω 2 δ n 2 ω ± E 2 ω i k 2 ω α 2 ω E 2 ω ± ,
Δ n ω ± = n 2 ( | E ω ± | 2 + 2 | E ω | 2 + | E 2 ω ± | 2 + | E 2 ω | 2 ) / 6 2 π e 2 N e / ( m e ω 2 ) , δ n ω ± = n 2 E 2 ω ± E 2 ω * / 6 ,
Δ n 2 ω ± = n 2 ( | E 2 ω ± | 2 + 2 | E 2 ω | 2 + | E ω ± | 2 + | E ω | 2 ) / 6 π e 2 N e / ( 2 m e ω 2 ) , δ n 2 ω ± = n 2 E ω ± E ω * / 6 ,
τ N e = ( R ω + R 2 ω ) [ N 0 N e ( τ ) ] ,

Metrics