Abstract

We present an efficient, simple, and passive technique for the reduction of timing jitter in passively Q-switched microchip lasers via self-injection seeding using a fiber delay line. The presented approach mitigates one inherent issue of passively Q-switched lasers without the need for active stabilization. At a repetition rate of a few hundred kilohertz and pulse duration of ~200 ps delivered by a microchip laser, the rms jitter is reduced from several nanoseconds down to 20ps, hence, significantly below the pulse duration of the laser source.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, Opt. Lett. 22, 381 (1997).
    [CrossRef] [PubMed]
  2. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, J. Opt. Soc. Am. B 16, 376 (1999).
    [CrossRef]
  3. J. J. Zayhowski, C. Dill, III, C. Cook, and J. L. Daneu, in Advanced Solid State Photonics, M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1999), paper TuC1.
  4. D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, Opt. Lett. 32, 2115 (2007).
    [CrossRef] [PubMed]
  5. A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
    [CrossRef]
  6. J. B. Khurgin, F. Jin, G. Solyar, C. C. Wang, and S. Trivedi, Appl. Opt. 41, 1095 (2002).
    [CrossRef] [PubMed]
  7. D. Nodop, J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, Appl. Phys. B 94, 399 (2009).
    [CrossRef]
  8. B. Cole, L. Goldberg, C. W. Trussell, A. Hays, B. W. Schilling, and C. McIntosh, Opt. Express 17, 1766 (2009).
    [CrossRef] [PubMed]
  9. R. Calvani, F. Cisternino, R. Girardi, and M. Puleo, Fiber Integr. Opt. 18, 33 (1999).
    [CrossRef]

2009 (3)

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

D. Nodop, J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, Appl. Phys. B 94, 399 (2009).
[CrossRef]

B. Cole, L. Goldberg, C. W. Trussell, A. Hays, B. W. Schilling, and C. McIntosh, Opt. Express 17, 1766 (2009).
[CrossRef] [PubMed]

2007 (1)

2002 (1)

1999 (2)

1997 (1)

Braun, B.

Calvani, R.

R. Calvani, F. Cisternino, R. Girardi, and M. Puleo, Fiber Integr. Opt. 18, 33 (1999).
[CrossRef]

Cisternino, F.

R. Calvani, F. Cisternino, R. Girardi, and M. Puleo, Fiber Integr. Opt. 18, 33 (1999).
[CrossRef]

Cole, B.

Cook, C.

J. J. Zayhowski, C. Dill, III, C. Cook, and J. L. Daneu, in Advanced Solid State Photonics, M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1999), paper TuC1.

Daneu, J. L.

J. J. Zayhowski, C. Dill, III, C. Cook, and J. L. Daneu, in Advanced Solid State Photonics, M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1999), paper TuC1.

Dill, C.

J. J. Zayhowski, C. Dill, III, C. Cook, and J. L. Daneu, in Advanced Solid State Photonics, M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1999), paper TuC1.

Fluck, R.

Gini, E.

Girardi, R.

R. Calvani, F. Cisternino, R. Girardi, and M. Puleo, Fiber Integr. Opt. 18, 33 (1999).
[CrossRef]

Goldberg, L.

Guina, M.

Hädrich, S.

D. Nodop, J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, Appl. Phys. B 94, 399 (2009).
[CrossRef]

Hays, A.

Hohmuth, R.

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, Opt. Lett. 32, 2115 (2007).
[CrossRef] [PubMed]

Jin, F.

Kärtner, F. X.

Keller, U.

Khurgin, J. B.

Limpert, J.

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

D. Nodop, J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, Appl. Phys. B 94, 399 (2009).
[CrossRef]

D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, Opt. Lett. 32, 2115 (2007).
[CrossRef] [PubMed]

McIntosh, C.

Moser, M.

Nodop, D.

D. Nodop, J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, Appl. Phys. B 94, 399 (2009).
[CrossRef]

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, Opt. Lett. 32, 2115 (2007).
[CrossRef] [PubMed]

Paschotta, R.

Puleo, M.

R. Calvani, F. Cisternino, R. Girardi, and M. Puleo, Fiber Integr. Opt. 18, 33 (1999).
[CrossRef]

Richter, W.

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, Opt. Lett. 32, 2115 (2007).
[CrossRef] [PubMed]

Rothhardt, J.

D. Nodop, J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, Appl. Phys. B 94, 399 (2009).
[CrossRef]

Schilling, B. W.

Solyar, G.

Spühler, G. J.

Steinmetz, A.

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

Trivedi, S.

Trussell, C. W.

Tünnermann, A.

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

D. Nodop, J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, Appl. Phys. B 94, 399 (2009).
[CrossRef]

D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, and A. Tünnermann, Opt. Lett. 32, 2115 (2007).
[CrossRef] [PubMed]

Wang, C. C.

Zayhowski, J. J.

J. J. Zayhowski, C. Dill, III, C. Cook, and J. L. Daneu, in Advanced Solid State Photonics, M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1999), paper TuC1.

Zhang, G.

Appl. Opt. (1)

Appl. Phys. B (2)

D. Nodop, J. Rothhardt, S. Hädrich, J. Limpert, and A. Tünnermann, Appl. Phys. B 94, 399 (2009).
[CrossRef]

A. Steinmetz, D. Nodop, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Appl. Phys. B 97, 317 (2009).
[CrossRef]

Fiber Integr. Opt. (1)

R. Calvani, F. Cisternino, R. Girardi, and M. Puleo, Fiber Integr. Opt. 18, 33 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (2)

Other (1)

J. J. Zayhowski, C. Dill, III, C. Cook, and J. L. Daneu, in Advanced Solid State Photonics, M. Fejer, H. Injeyan, and U. Keller, eds., Vol. 26 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1999), paper TuC1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of the self-injection seeded passively Q-switched microchip laser. The delay line consists of an optical fiber terminated by an FBG and the additional combination of a half-wave plate with a polarization cube used to control the energy of the backseeded pulse. MCL, microchip laser; HWP, half-wave plate; Pol, polarizer.

Fig. 2
Fig. 2

Statistically distributed variation of the pulse-to-pulse period of a free-running microchip laser at a repetition rate of around 500 kHz . This measurement is depicted in Fig. 3 by the round point.

Fig. 3
Fig. 3

This graph shows the magnitude contrast of the interpulse period (triangles), pulse duration (squares), and rms timing jitter of a free-running (dots) and self-injection seeded (stars) microchip laser over its repetition rate.

Fig. 4
Fig. 4

Variation of the pulse-to-pulse period applying SIS to the microchip laser at the fundamental repetition rate of the delay line, f DELAY = 522 kHz .

Metrics