Abstract

We present the design of a short broadband fiber directional coupler for terahertz (THz) radiation and demonstrate a 3dB coupler with a bandwidth of 0.6THz centered at 1.4THz. The broadband coupling is achieved by mechanically downdoping the cores of a dual-core photonic crystal fiber by microstructuring the cores. This is equivalent to chemical downdoping but is easier to realize experimentally.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, Nature Photon. 1, 97 (2007).
    [CrossRef]
  2. A. Hassani, A. Dupuis, and M. Skorobogatiy, Appl. Phys. Lett. 92, 071101 (2008).
    [CrossRef]
  3. A. Dupuis, J. F. Allard, D. Morris, K. Stoffler, C. Dubois, and M. Skorobogatiy, Opt. Express 17, 8012 (2009).
    [CrossRef] [PubMed]
  4. S. Atakaramians, V. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, Opt. Express 16, 8845 (2008).
    [CrossRef] [PubMed]
  5. S. Atakaramians, V. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, Opt. Commun. 282, 36 (2009).
    [CrossRef]
  6. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, J. Opt. Soc. Am. B 17, 851 (2000).
    [CrossRef]
  7. R. Mendis and D. Grischkowsky, J. Appl. Phys. 88, 4449(2000).
    [CrossRef]
  8. R. Mendis and D. Grischkowsky, Opt. Lett. 26, 846 (2001).
    [CrossRef]
  9. R. Mendis and D. Grischkowsky, IEEE Microw. Wireless Compon. Lett. 11, 444 (2001).
    [CrossRef]
  10. B. Bowden, J. A. Harrington, and O. Mitrofanov, Opt. Lett. 32, 2945 (2007).
    [CrossRef] [PubMed]
  11. K. Wang and D. M. Mittleman, Nature 432, 376 (2004).
    [CrossRef] [PubMed]
  12. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, Opt. Lett. 31, 308 (2006).
    [CrossRef] [PubMed]
  13. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, Opt. Express 17, 8592 (2009).
    [CrossRef] [PubMed]
  14. J. Lægsgaard, O. Bang, and A. Bjarklev, Opt. Lett. 29, 2473 (2004).
    [CrossRef] [PubMed]
  15. M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, Opt. Express 9, 319 (2001).
    [CrossRef] [PubMed]
  16. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjær, and L. Lindvold, Opt. Lett. 32, 460(2007).
    [CrossRef] [PubMed]
  17. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, Opt. Lett. 32, 1059 (2007).
    [CrossRef]
  18. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2001).
    [CrossRef] [PubMed]
  19. N. A. Mortensen and J. R. Folkenberg, J. Opt. A 5, 163 (2003).
    [CrossRef]

2009 (3)

2008 (2)

2007 (4)

2006 (1)

2004 (2)

2003 (1)

N. A. Mortensen and J. R. Folkenberg, J. Opt. A 5, 163 (2003).
[CrossRef]

2001 (4)

2000 (2)

Abbott, D.

S. Atakaramians, V. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, Opt. Commun. 282, 36 (2009).
[CrossRef]

S. Atakaramians, V. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, Opt. Express 16, 8845 (2008).
[CrossRef] [PubMed]

Adam, A. J. L.

Afshar, V.

S. Atakaramians, V. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, Opt. Commun. 282, 36 (2009).
[CrossRef]

S. Atakaramians, V. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, Opt. Express 16, 8845 (2008).
[CrossRef] [PubMed]

Allard, J. F.

Argyros, A.

Atakaramians, S.

S. Atakaramians, V. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, Opt. Commun. 282, 36 (2009).
[CrossRef]

S. Atakaramians, V. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, Opt. Express 16, 8845 (2008).
[CrossRef] [PubMed]

Bang, O.

Bassett, I.

Bjarklev, A.

Bowden, B.

Chen, H. W.

Chen, L. J.

de Sterke, C. M.

Dubois, C.

Dupuis, A.

Emiliyanov, G.

Fischer, B. M.

S. Atakaramians, V. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, Opt. Commun. 282, 36 (2009).
[CrossRef]

S. Atakaramians, V. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, Opt. Express 16, 8845 (2008).
[CrossRef] [PubMed]

Fleming, S.

Folkenberg, J. R.

N. A. Mortensen and J. R. Folkenberg, J. Opt. A 5, 163 (2003).
[CrossRef]

Gallot, G.

Grischkowsky, D.

R. Mendis and D. Grischkowsky, Opt. Lett. 26, 846 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, IEEE Microw. Wireless Compon. Lett. 11, 444 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, J. Appl. Phys. 88, 4449(2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, J. Opt. Soc. Am. B 17, 851 (2000).
[CrossRef]

Harrington, J. A.

Hassani, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

Hoiby, P. E.

Issa, N. A.

Jamison, S. P.

Jensen, J. B.

Jepsen, P. U.

Joannopoulos, J. D.

Johnson, S. G.

Kao, T. F.

Kjær, E. M.

Kjaer, E. M.

Lægsgaard, J.

Large, M. C. J.

Lindvold, L.

Lu, J. Y.

Manos, S.

McGowan, R. W.

McPhedran, R. C.

Mendis, R.

R. Mendis and D. Grischkowsky, Opt. Lett. 26, 846 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, IEEE Microw. Wireless Compon. Lett. 11, 444 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, J. Appl. Phys. 88, 4449(2000).
[CrossRef]

Mitrofanov, O.

Mittleman, D. M.

K. Wang and D. M. Mittleman, Nature 432, 376 (2004).
[CrossRef] [PubMed]

Monro, T. M.

S. Atakaramians, V. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, Opt. Commun. 282, 36 (2009).
[CrossRef]

S. Atakaramians, V. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, Opt. Express 16, 8845 (2008).
[CrossRef] [PubMed]

Morris, D.

Mortensen, N. A.

N. A. Mortensen and J. R. Folkenberg, J. Opt. A 5, 163 (2003).
[CrossRef]

Nicorovici, N. A. P.

Nielsen, K.

Pedersen, L. H.

Planken, P. C. M.

Rasmussen, H. K.

Skorobogatiy, M.

Stoffler, K.

Sun, C. K.

Tonouchi, M.

M. Tonouchi, Nature Photon. 1, 97 (2007).
[CrossRef]

van Eijkelenborg, M. A.

Wang, K.

K. Wang and D. M. Mittleman, Nature 432, 376 (2004).
[CrossRef] [PubMed]

Zagari, J.

Appl. Phys. Lett. (1)

A. Hassani, A. Dupuis, and M. Skorobogatiy, Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

IEEE Microw. Wireless Compon. Lett. (1)

R. Mendis and D. Grischkowsky, IEEE Microw. Wireless Compon. Lett. 11, 444 (2001).
[CrossRef]

J. Appl. Phys. (1)

R. Mendis and D. Grischkowsky, J. Appl. Phys. 88, 4449(2000).
[CrossRef]

J. Opt. A (1)

N. A. Mortensen and J. R. Folkenberg, J. Opt. A 5, 163 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

K. Wang and D. M. Mittleman, Nature 432, 376 (2004).
[CrossRef] [PubMed]

Nature Photon. (1)

M. Tonouchi, Nature Photon. 1, 97 (2007).
[CrossRef]

Opt. Commun. (1)

S. Atakaramians, V. Afshar, B. M. Fischer, D. Abbott, and T. M. Monro, Opt. Commun. 282, 36 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Broadband THz coupler design with mechanically downdoped cores. All the considered designs have a pitch of Λ = 750 μm and hole-to-pitch ratio of d / Λ = 0.40 .

Fig. 2
Fig. 2

(a) Effective refractive index of the odd modes of doped coupler designs with Λ c = 97.5 μm , d c / Λ c = 0.105 (red long-dashed curve), and d c / Λ c = 0.145 (blue short-dashed curve). The top solid curve (black) is the index of the odd mode of the undoped core coupler, while the bottom solid curve (black) is the FSM. (b) Coupling length of a normal coupler (solid) and downdoped couplers (dotted and dashed). Red curves have Λ c = 97.5 μm (short dashed), Λ c = 108.75 μm (dotted) and Λ c = 120 μm (long dashed). Blue curves have Λ c = 97.5 μm (short dashed), Λ c = 127.5 μm (dotted) and Λ c = 150 μm (long dashed). The large green arrows indicate where the cutoff of the odd mode in (a) leads to an abrupt increase in the coupling length in (b).

Fig. 3
Fig. 3

Normalized output from the launch arm of a 20-cm-long coupler. The undoped coupler (solid) crosses the 50% region rapidly and therefore has a narrow bandwidth. The microstructured coupler has a plateau around 50% centered at 1.4 THz and therefore has a broad bandwidth at 1.4 THz . In this case, d c / Λ c = 0.105 .

Fig. 4
Fig. 4

Center frequency versus 3 dB bandwidth. The solid curve (black) is the undoped coupler. The three high-frequency designs (red) have d c / Λ c = 0.105 , while the three low-frequency designs (blue) have d c / Λ c = 0.145 . In the high-frequency case, the short dashed curve has Λ c = 97.5 μm , the dotted curve has Λ c = 108.75 μm , and the dashed curve has Λ c = 120 μm . In the low-frequency case, the short dashed curve has Λ c = 97.5 μm , the dotted curve has Λ c = 127.5 μm , and the dashed curve has Λ c = 150 μm .

Fig. 5
Fig. 5

FOM arranged as in Fig. 4.

Metrics